一、数学实验成为数学课堂学习方式的思考(论文文献综述)
柳剑军[1](2021)在《巧借数学实验,培养学生思维》文中进行了进一步梳理初中数学新课程标准的深入实施,为数学课堂教学活动带来了新的发展方向.与以往的初中数学教学相比,新形势下的数学教学不再单纯关注对学生知识与技能的传授,而是将学生学习的过程、方法以及学科情感的建立融入数学教学活动中.数学实验作为提升学生数学综合学习能力、培养学生学科素养的重要方式之一,其开展质量的高低,对数学学科教学质量乃至学生综合素养的提升产生了非常积极的影响.因此,如何在课堂教学中有效应用数学实验,培养学生数学思维,建立学生数学情感,是当前数学教学的重要任务之一.本文分析了初中数学课堂中数学实验开展的重要性,并从不同维度提出了借助数学实验培养学生思维的有效措施,为学生搭建多元化的数学活动平台,进而有效推动学生数学综合素养的提升与发展.
陶政国,李海龙[2](2021)在《数学实验在高中数学探究教学中的应用》文中研究说明在很多人看来,数学不需要实验,尤其是身处应试体制环境中,教学最终目的是为考试服务,避免不了教师主导地位的发挥,进而忽视了引导对问题进行观察、实验、探索、归纳及猜想,培养出来的学生很难具有创新精神。以往课堂教学中,教师更多地采用讲授教学方法,应用现成原理,忽视实验探究过程,这导致很多学生难以感受数学本质所在,学习兴趣和积极性都不高,数学内容抽象、乏味,整个数学课堂死气沉沉。面对这一情况,数学课堂要引入实验,以此引发学生对知识的探究欲,真正获悉知识的来源、本质。
张享发,宋程[3](2021)在《e-数学实验室环境下高中数学“创课导学”教学法的理论与实践》文中提出在2000年召开的国际数学教育大会上,与会代表一致认为:"信息技术"和"数学应用"正成为数学教育改革的重点.然而,我们的高中数学课堂一直存在着教学设计呆板、教学过程僵化、技术融合生硬、学生学习被动的倾向,与国际数学教育发展的潮流和我国基础教育课程改革所倡导的基本理念不相适应.
林宇杰[4](2021)在《基于Hawgent皓骏动态数学软件的数学实验教学模式研究 ——以“一次函数图象与性质”为例》文中研究说明《教育信息化2.0行动计划》指出“当前信息技术与学科教学深度融合不够,需要推动教学观念更新,模式的改革,要持续推动信息技术与教育深度融合,促进两个方面水平提高”。《义务教育课程标准(2011年版)》也特别强调:“把现代信息技术作为学生学习数学和解决问题的有力工具,有效地改进教与学的方式,使学生乐意并有可能投入到现实的、探索性的教学活动中去”。信息技术如何深度融合数学课堂成为热议话题。数学除了严谨的演绎推理,还需要实验的归纳推理。中小学课堂应让学生尽量经历数学实验探究,使其在“做”与“思”的过程中积累数学活动经验。随着数学实验的发展,数学实验融入课堂成为关注热点。如何借助技术,构建数学实验教学模式成为现在中小学课堂亟待解决的痛点。本研究试图构建基于Hawgent皓骏动态数学软件的数学实验教学模式,并探讨其应用策略,提升数学实验教学效率。本研究主要从理论与实践两方面展开探究。从理论研究出发,首先,通过文献搜集整理,梳理数学实验、数学实验教学模式、Hawgent皓骏动态数学软件等相关研究,并提出观点与思路。接着,以杜威从“做”中学的思维五步法与数学多元表征学习理念为理论基础,探究基于皓骏的数学实验教学模式。在宏观层面,构建数学实验教学基本流程:实验目标→实验重难点→实验预备→实验设计思路→实验过程→实验测验。在微观层面,创设数学实验教学基本环节:创设数学情境,明确实验问题→提出假设猜想,动手操作验证→归纳实验结论,拓展变式训练→构建思维导图,注重实验反思。并且,提出应用策略:(1)明确数学实验内容;(2)多元表征实验积件;(3)创设数学实验问题;(4)实验探究动静结合;(5)实验报告问题导航;(6)开展实验小组交流;(7)建构实验思维导图。从实践研究出发,采用基于皓骏的数学实验教学模式开展教学活动,通过实验前后测、问卷调查、访谈调查等研究方法,探讨模式及应用策略对学生的数学学习结果变量及过程变量的影响。实验研究表明:采用基于皓骏的数学实验教学模式开展教学,能显着改善学生的数学学习成绩,对绝大多数学生的数学理解能力、解决过程、思维水平、学习方式及情感态度产生积极正向影响。
刘钊伶[5](2021)在《人教版初中数学“实验与探究”栏目教学实施现状及案例研究》文中研究指明《全日制义务教育数学课程标准(2011年版)》指出“综合与实践”是一类以问题为载体、以学生自主参与为主的学习活动。因而,“综合与实践”板块强调要将实际问题与数学课堂紧密联系起来,为学生提供一个实践与探究的平台,从而培养和发展学生的综合实践能力和创新应用意识。人教版初中数学教科书“实验与探究”栏目作为“综合与实践”领域的主要表现形式之一,开设的意义重大,该栏目的开设不仅能够促进新课程标准理念的有效落实,还能够提升学生的数学素养和数学实验探究能力,培养学生的探究意识与创新意识,促进学生的全面发展。然而,近年来对于人教版初中数学教科书“实验与探究”栏目内容和教学等方面的研究颇少,故对于如何开展“实验与探究”栏目教学的指导性建议也没有比较权威的文章。本研究尝试以南宁市一所初中学校为例,探索“实验与探究”栏目的相关内容与认识,研究“实验与探究”栏目教学中存在的一些问题,进而为“实验与探究”栏目的教学开展提供一些参考与建议。本研究为调查教师与学生使用“实验与探究”栏目的情况以及教学情况,在实习学校对教师与学生进行问卷调查,在相关理论基础上,把教师问卷划分为“理解研究”、“整合情况”、“运用情况”、“评价情况”四个维度,把学生问卷分为“认识”、“兴趣”、“体验”、“动机”、“价值观”五个维度,通过分析调查结果,得出相关结论。在此基础上,分别选取七、八年级的两个班级开展“实验与探究”栏目的教学,利用案例分析法对这两节课堂实录进行分析,并对听课教师与上课学生进行访谈,进而更深入了解教师与学生对“实验与探究”栏目的看法,归纳出存在的问题,得出相关结论。最后,针对开展教学过程中出现的问题提出相关教学建议。综合上述两个研究,本文得出以下主要结论:1.大部分教师与学生对“实验与探究”栏目持认可态度,但“实验与探究”栏目的教学却存在“总体状况一般,有待提高”的问题。2.七、八、九年级学生对于“实验与探究”栏目中认识、兴趣、体验、价值观四个维度的差异性都是显着的,而动机维度的差异性不显着。3.通过对教师问卷与学生问卷进行相关性分析发现,(1)教师对“实验与探究”栏目的设置目的、教学目标、教学方式方法的认识程度以及教学实施情况之间存在相关性。(2)教师对“实验与探究”栏目教学作用的认识、对教科书中设置“实验与探究”栏目的态度之间存在相关性。(3)学生主动学习“实验与探究”栏目内容的情况与学生对“实验与探究”栏目的兴趣情况之间存在相关性。(4)学生主动学习“实验与探究”栏目内容的情况与学生对“实验与探究”栏目的学习态度之间存在相关性。4.“实验与探究”栏目的教学是有效果的,对学生的实验探究能力和探究性思维的增长都有一定的促进作用。5.“实验与探究”栏目教学效果问题的内部原因主要有:(1)教师方面,教师自身对该栏目的认识和理解不够到位,并且在思想上认为栏目内容在考试大纲中没有明确要求,考试也不考。(2)学生方面,学生自身的探究性意识和探究能力比较弱,需要教师的引导,并且学生多少会存在一定的学习惰性,对基础知识掌握不牢固等。6.“实验与探究”栏目教学效果问题的外部原因主要有:(1)教师日常的教学方式比较单一,主要以讲授式来开展,极少开展探究性的数学活动;(2)由于中考考试压力的影响,教师的教学任务、教学压力重,学生的学习压力也重,故对中考有关的内容才注重,其他知识和能力则忽略了;(3)学校不够重视,学校的教学条件有限等。本文提出的建议有:在栏目设置方面,内容要广泛有趣并与实际生活相联系,要与教学内容相关,并且具有一定的拓展空间,栏目的数量可以适当的增加一些等;在栏目教学方面,合理利用“实验与探究”栏目,满足学生思维和能力的发展,多种教学方式融合教学,精心设计教学内容等;在栏目学习方面,多与同学沟通交流,分享探究思路和探究方式方法,注重对探究过程的总结,注重对所学知识的归纳和联系等。
黄诗坤[6](2021)在《基于5E学习环的数学实验教学模式研究 ——以初一“图形的认识”为例》文中研究指明2011年《义务教育数学课程标准》将课程总目标由重视基础知识和基本技能的教学转变为重视数学的基本知识、基本技能、基本思想和基本活动经验。随着《教育信息化2.0行动计划》的出台,数学教育进入了信息化的新时代。许多中学数学教师充分利用现代教育技术的便捷性、高效性等特点,充分将其融入到课堂教学中,进行有趣的数学实验。数学实验与数学教学的深度融合既是时代发展的潮流,也是培育数学核心素养的内在要求。如何更好地在数学课堂中增加学生的基本活动经验是当今教育研究的热点问题。“图形的认识”隶属于初中数学教学内容四大版块中的“图形与几何”的重要的内容,也是初中平面几何的开端,如何开好平面几何的“龙头”是许多教师的“难点”。“图形与几何”内容是培养学生直观感知、直观想象、抽象思维和逻辑推理等核心素养的重要载体。但这部分内容由于画图的规范性、语言的抽象性、推理的逻辑性等特点,便成为学习的难点,难以发挥其应有的功能与作用。因此,本文试图基于5E学习环的理论指导下融入数学教学,解决几何学习的痛点,提升几何教学有效性。本研究的中心主要是根据理论研究及实践研究,探讨构造在5E学习环为理论指导下的数学实验模式与教学策略,并根据数学实验模式进行教学实验,结合问卷调查法、采访实践研究阐述研究成果。主要从理论研究和实践研究两方面进行探索:在理论研究方面,主要以文献研究法为主,理论研究为主。首先研究者概述数学实验、5E学习环的综述;其次,探讨实验教学模式的理论基础,归纳教学设计的基本理念与策略;最后研究者构建基于5E学习环尝试构建数学实验教学模式:实验导言—实验目的—实验过程—实验结论—实验拓展—实验反思。总结基于5E学习环尝试构建数学实验教学模式的教学策略:以学生为主体,增强实验主体性;以问题为导向,提升实验主动性;以探究为主线,增强实验活动性;以技术为帮手,增强几实验有效性;以激励为评价,促进实验反思性;以小组为单位,加强实验分享性。在实践研究方面,主要以教学实验研究为主,课例研究为辅,构建基于5E学习环数学实验模式进行实验教学,检验该实验模式对学生数学学习过程与学习结果的影响。研究结果表明:基于5E学习环数学实验教学模式对学生学习成绩的提高有积极作用,对学生学习过程(知识理解、情感态度等)具有较为积极的影响;通过调查表明,绝大多数学生对5E学习环数学实验教学模式持较为赞同的态度。
王蕊[7](2021)在《基于图形计算器的初中数学命题实验教学模式的研究》文中指出近二十年来,基于现代信息技术的数学实验教学逐渐成为国内外数学教学研究的重要内容.数学实验教学有助于初中生的创新意识、应用意识和数学建模等核心素养的培养.数学知识类型的不同决定了数学实验教学方式的差异.本研究在分析已有文献的基础上,利用问卷调查法、教育实验法和案例分析法等,对基于图形计算器的初中数学命题实验教学模式进行较为系统的研究.主要研究结论如下.第一,分析AH省初中数学命题教学与数学实验教学现状.研究表明:(1)大部分的初中数学教师希望开展数学实验课,但是缺乏相关的教学设备、操作培训以及可供参考的数学实验教学模式;(2)初中数学命题教学效果不佳.教师普遍认同引导学生自主探究命题的形成过程有利于命题教学,但在实际的教学中体现度不高.第二,在具身认知理论、再创造理论和数学命题学习理论的指导下,建构基于图形计算器的初中数学命题实验教学模式,并结合具体的教学案例对模式的运行程序进行举例说明.第三,教育实验结果表明,本文建构的基于图形计算器的初中数学命题实验教学模式是有效的.首先,该教学模式能有效提高学生的命题学习成绩,实验班与对照班的数学命题学习成绩存在显着性差异.其次,该教学模式能提高学生数学命题学习兴趣、动手操作能力以及问题探究意识.
朱昕茹[8](2021)在《小学数学校本课程开发实践研究 ——以江苏省A学校《数学实验》课程为例》文中研究指明校本课程作为学校课程中的一部分,引起了众多学者的关注。他们以校本课程开发为主题从较为宏观的角度,如校本课程的现状、问题、策略等进行了探讨和研究。不少教育工作者在实施国家课程与地方课程的同时进行了校本课程的研究开发,但由于校本课程自身以学校为研究开发主体的特殊性,形成的书面资料却不够完整和丰富,也缺乏系统性。其中关于数学校本课程开发的占比很低,具体到小学数学校本课程开发就更少。因此本研究以江苏省A学校《数学实验》课程为例,对小学数学校本课程开发进行实践研究。本研究综合运用文献法、问卷调查法、访谈法,在梳理了与校本课程开发以及小学数学校本课程开发相关的研究成果基础上,厘清了对校本、课程、校本课程、小学数学校本课程开发概念的理解。简述了小学数学校本课程开发借鉴的理论模式,展现了以小学数学苏教版教材为基础的小学《数学实验》校本课程开发过程,包括课程开发环境分析、课程研究设计、课程实施与评估三大方面。小学《数学实验》校本课程开发对学校概况、开发队伍、学生情况进行了介绍,通过问卷调查重点对学生需求和教师情况进行了分析。从课程目标设置、课程开发原则、课程开设形式和课程内容选择四点研究设计了校本课程,以案例的形式呈现校本课程具体实施过程,从评价主体、评价内容、评价方式三方面对校本课程进行评价。最后通过多角度全面系统的分析和研究,形成了对小学数学校本课程开发过程三大方面的相关反思和展望。本研究直面剖析了小学《数学实验》校本课程开发过程中的困境与对策,为小学数学校本课程的开发提供了实践的案例及策略分享,希望为教师进一步探索小学数学校本课程开发提供实践依据,为后续研究提供参考经验。
康雯[9](2021)在《TPMK视角下信息技术深度融合初中数学教学的视频课例研究 ——以2019年广西“一师一优课”为例》文中指出我国的《教育信息化2.0行动计划》、《义务教育课程标准(2011年版)》和《普通高中数学课程标准(2017年版)》等相关文件对信息技术深度融合数学教学提出了新的要求。但从现有的相关文献来看,信息技术深度融合数学教学的研究主要集中在理论指导和实践运用部分,如何评价信息技术深度融合初中数学教学以及如何进一步促进信息技术与初中数学教学深度融合还有待进一步研究。由国家部署的、教育部力推的“一师一优课,一课一名师”活动在增进中小学优质教育资源共建共享、信息技术与教育教学深度融合方面具有鲜明的典型意义和样本价值,且该活动的初衷和落脚点均在于促进信息技术与教学的深度融合。基于此,笔者以广西壮族自治区2019年度“一师一优课”平台中的初中数学优课课例为研究对象,以TPMK知识理论和SAMR模型为指导,采用课堂观察法、案例分析法等对相关课例进行分析,了解不同级别“优课”所呈现出的TPMK特征,得到以下几个方面的结论:1.不同级别优课课例呈现出的教师TPMK结构整体差异不大,但TPMK水平存在一定差异;在信息技术应用的取向上无明显差异,但在教学策略和教学方法上高级别优课更加关注学生在教学中的主体性。2.初中数学教师将信息技术融入初中数学课堂教学的评价均未达到重塑水平,主要集中于替代和增强层次。3.高级别初中数学优课中信息技术应用更为频繁,在信息技术应用水平相较低级别优课更高,多属于增强和修改水平,低级别初中数学优课多属于增强和替代水平。4.各级优课课例在整合技术的教学策略知识和整合技术的评价知识两大维度表现突出,在整合技术的教学策略知识维度主要表现为利用信息技术表征教学内容、处理学生错误,以及设置任务驱动等;在整合技术的评价知识维度主要利用信息了解学生的学习情况,利用信息技术对学生进行评价比较少。基于以上结论,为进一步推进信息技术与初中数学教学的深度融合,提升教师的TPMK水平,本研究提出相关建议:1.注重信息技术与数学课程融合的目标设定,深化利用信息技术深度融合初中数学教学的统领性观念,提升创新数学教学模式的意识。2.注重信息技术与数学课程教学内容的深度融合,更有效地发挥数学课程教学的育人功能。3.注重信息技术与数学课程教学手段和方式方法的深度融合,适应时代需求,进一步满足学生个性化学习的需要。4.注重信息技术与数学课程教学评价的深度融合,进行个性化评价,促进生成性教学。
王康宁[10](2021)在《初中数学实验教学现状的调查与研究》文中研究指明社会的发展使人们越来越意识到,数学的学习不能仅仅是简单的接受、机械的训练和死记硬背,更要强调学生的积极参与、主动探究和动手操作。数学实验通过不同形式的自主学习、探究活动,有效地再现知识产生的背景,还原知识产生的过程,让学生体验数学发现,掌握数学知识,培养创新意识。数学实验教学的现状是值得我们关注的课题。本文首先通过文献研究法,了解了数学实验的起源和国外中学数学实验课的开设情况,梳理了国内数学实验教学的发展历程及相关的研究,界定了数学实验教学的内涵和要求。其次,通过调查研究法了解初中数学实验教学的现状。调查问卷包括教师问卷和学生问卷。整理教师问卷的数据后发现,大部分教师觉得开展数学实验教学是有必要的,他们愿意尝试也有信心开展数学实验教学,但是实际上数学教师开展数学实验教学的频率并不高。学生问卷的调查结果显示,初中生期待数学实验教学模式,他们觉得数学实验能激发学习兴趣,提高实践能力,使思维更加活跃。第三,通过访谈研究法分析影响数学实验教学开展的因素。其中主要因素包括师生的素质能力、学校的教学环境和初中数学实验的教学内容和过程等。最后,从改变教师观念和提升师生素养、改善教研环境和合理安排时间、拓展实验内容和优化教学过程等方面为初中数学教师开展实验教学给出了一些建议。
二、数学实验成为数学课堂学习方式的思考(论文开题报告)
(1)论文研究背景及目的
此处内容要求:
首先简单简介论文所研究问题的基本概念和背景,再而简单明了地指出论文所要研究解决的具体问题,并提出你的论文准备的观点或解决方法。
写法范例:
本文主要提出一款精简64位RISC处理器存储管理单元结构并详细分析其设计过程。在该MMU结构中,TLB采用叁个分离的TLB,TLB采用基于内容查找的相联存储器并行查找,支持粗粒度为64KB和细粒度为4KB两种页面大小,采用多级分层页表结构映射地址空间,并详细论述了四级页表转换过程,TLB结构组织等。该MMU结构将作为该处理器存储系统实现的一个重要组成部分。
(2)本文研究方法
调查法:该方法是有目的、有系统的搜集有关研究对象的具体信息。
观察法:用自己的感官和辅助工具直接观察研究对象从而得到有关信息。
实验法:通过主支变革、控制研究对象来发现与确认事物间的因果关系。
文献研究法:通过调查文献来获得资料,从而全面的、正确的了解掌握研究方法。
实证研究法:依据现有的科学理论和实践的需要提出设计。
定性分析法:对研究对象进行“质”的方面的研究,这个方法需要计算的数据较少。
定量分析法:通过具体的数字,使人们对研究对象的认识进一步精确化。
跨学科研究法:运用多学科的理论、方法和成果从整体上对某一课题进行研究。
功能分析法:这是社会科学用来分析社会现象的一种方法,从某一功能出发研究多个方面的影响。
模拟法:通过创设一个与原型相似的模型来间接研究原型某种特性的一种形容方法。
三、数学实验成为数学课堂学习方式的思考(论文提纲范文)
(1)巧借数学实验,培养学生思维(论文提纲范文)
前 言 |
一、数学实验开展重要性分析 |
二、巧借数学实验,培养学生数学思维策略分析 |
(一)明确实验原则,注重学生思维培养 |
(二)落实实验活动,拓展学生数学思维 |
1.数学实验在教学活动中的应用 |
2.数学实验融入作业设计 |
(三)合理安排资源,搭建数学探究平台 |
(四)完善系统评价,保证数学实验质量 |
三、结束语 |
(2)数学实验在高中数学探究教学中的应用(论文提纲范文)
一、数学实验与高中数学探究教学之间的关系 |
二、数学实验在高中数学探究教学中应用的问题 |
(一)学生缺乏一定的动手能力 |
(二)教师缺乏相关经验 |
(三)未能把握好数学实验开展的度 |
三、数学实验在高中数学探究教学中的应用策略 |
(一)增强学生的应用意识 |
(二)创设问题情境 |
(三)注重课堂引导 |
(四)应用现代科技手段 |
(五)注重提升动手能力 |
(3)e-数学实验室环境下高中数学“创课导学”教学法的理论与实践(论文提纲范文)
一、概念界定 |
(一)数学实验与数学实验室环境 |
(二)e-数学实验室环境 |
(三)创课导学 |
二、理论探索 |
(一)弗赖登塔尔的数学教育理论 |
(二)体验式学习理论 |
(三)人本主义学习理论 |
(四)发现学习理论和建构主义理论 |
三、课程资源建设 |
四、教学法凝练 |
(一)问题导向 |
(二)实验导学 |
(三)目标解惑 |
五、四类课型创新策略研究 |
(一)数学概念课“创课导学”教学策略 |
(二)数学命题课“创课导学”教学策略 |
(三)数学实验课“创课导学”教学策略 |
(四)数学建模课“创课导学”教学策略 |
(4)基于Hawgent皓骏动态数学软件的数学实验教学模式研究 ——以“一次函数图象与性质”为例(论文提纲范文)
中文摘要 |
Abstract |
第1章 绪论 |
一、研究背景与问题 |
(一)研究背景 |
(二)研究问题 |
二、研究目的与意义 |
(一)研究目的 |
(二)研究意义 |
三、研究思路与方法 |
(一)研究思路 |
(二)研究方法 |
第2章 相关研究概述 |
一、数学实验发展概述 |
(一)国外数学实验的发展现状 |
(二)国内数学实验的发展现状 |
(三)研究概述简评 |
二、数学实验相关研究概述 |
(一)数学实验文献计量分析 |
(二)数学实验文献主题分析 |
(三)研究概述简评 |
三、Hawgent皓骏动态数学软件的研究现状 |
(一)Hawgent皓骏动态数学软件相关研究概述 |
(二)Hawgent皓骏操作界面与特色功能 |
(三)研究概述简评 |
第3章 基于皓骏(Hawgent)的数学实验教学模式的研究 |
一、数学实验教学模式建构的理论基础 |
(一)杜威的“从做中学”教学理论 |
(二)数学多元表征学习理念 |
二、基于皓骏(Hawgent)的数学实验教学模式 |
(一)基于皓骏的数学实验教学模式的构建 |
(二)数学实验教学模式的宏观流程 |
(三)数学实验教学模式的基本环节 |
三、基于皓骏(Hawgent)的数学实验教学模式应用策略及案例 |
(一)明确数学实验内容 |
(二)多元表征实验积件 |
(三)创设数学实验问题 |
(四)实验探究动静结合 |
(五)实验报告问题导航 |
(六)开展实验小组交流 |
(七)建构实验思维导图 |
第4章 基于皓骏(Hawgent)的数学实验教学模式的实证研究 |
一、实验方案设计 |
(一)实验假设 |
(二)实验对象 |
(三)实验变量 |
(四)实验方式 |
(五)实验材料 |
二、实验结果与数据分析 |
(一)前测成绩结果与分析 |
(二)后测成绩结果与分析 |
三、问卷调查结果分析 |
四、个别访谈情况分析 |
五、结论 |
第5章 基于皓骏(Hawgent)的数学实验教学模式的课例研究 |
一、《正比例函数图象及性质》教学设计及实录对比评析 |
(一)《正比例函数图象及性质》教学设计对比 |
(二)教学实录对比及评析 |
二、《一次函数图象及性质》教学设计及实录对比评析 |
(一)《一次函数图象及性质》教学设计对比 |
(二)教学实录对比及评析 |
三、课后反思品评 |
(一)自我反思 |
(二)专家点评 |
第6章 研究结论、反思与展望 |
一、研究结论 |
二、研究反思 |
三、研究展望 |
参考文献 |
附录 |
附录1 《正比例函数图象及性质》学生实验报告单 |
附录2 《一次函数图象及性质》学生实验报告单 |
附录3 一次函数的图象(第1课时)(正比例函数图象及性质)后测卷 |
附录4 一次函数的图象(第2课时)(一次函数图象及性质)后测卷 |
附录5 基于皓骏的数学实验教学模式——以“一次函数图象与性质”为例调查问卷 |
附录6 访谈提纲 |
硕士学习期间发表的论文目录 |
致谢 |
(5)人教版初中数学“实验与探究”栏目教学实施现状及案例研究(论文提纲范文)
摘要 |
Abstract |
1 引言 |
1.1 研究背景 |
1.1.1 时代发展的需求 |
1.1.2 新课程标准的要求 |
1.1.3 初中数学“实验与探究”栏目的教学情况 |
1.2 研究问题 |
1.3 研究方法 |
1.3.1 文献分析法 |
1.3.2 调查研究法 |
1.3.3 案例分析法 |
1.4 研究目的及意义 |
1.4.1 研究目的 |
1.4.2 研究意义 |
1.5 研究创新之处 |
2 研究综述 |
2.1 数学实验的相关研究 |
2.1.1 关于数学实验内容的研究 |
2.1.2 关于数学实验教学的研究 |
2.2 数学探究的相关研究 |
2.2.1 关于数学探究学习的研究 |
2.2.2 关于数学探究教学的研究 |
2.2.3 关于数学探究能力的研究 |
2.3 数学教科书栏目的相关研究 |
2.3.1 关于“数学活动”栏目的研究 |
2.3.2 关于“阅读与思考”栏目的研究 |
2.4 初中数学“实验与探究”栏目的相关研究 |
2.4.1 数学“实验与探究”栏目的国外研究 |
2.4.2 数学“实验与探究”栏目的国内研究 |
2.5 文献总结 |
2.6 理论基础 |
2.6.1 皮亚杰的认知发展理论 |
2.6.2 建构主义学习理论 |
2.6.3 弗莱登塔尔的数学教育思想 |
2.6.4 维度划分法的借鉴及维度成分的确定 |
3 人教版初中数学“实验与探究”栏目的文本内容分析 |
3.1 概念界定 |
3.2 几个版本教材中“实验与探究”栏目的对比 |
3.2.1 几个版本教材中探究类栏目的名称比较分析 |
3.2.2 几个版本教材中探究类栏目的数量及分布情况比较分析 |
3.3 人教版教科书“实验与探究”栏目的内容分析 |
3.3.1 “实验与探究”栏目的数量与分布 |
3.3.2 “实验与探究”栏目的呈现方式 |
3.3.3 “实验与探究”栏目的分类 |
3.4 人教版教科书“实验与探究”栏目的特点 |
3.5 人教版教科书“实验与探究”栏目的作用 |
4 人教版初中数学“实验与探究”栏目教学的现状调查 |
4.1 调查目的 |
4.2 调查方法及对象 |
4.3 调查的设计 |
4.3.1 调查问卷的编制思路 |
4.3.2 调查问卷的编制 |
4.4 调查问卷的正式实施 |
4.5 数据的处理 |
4.6 问卷调查结果与分析 |
4.6.1 教师问卷调查结果分析 |
4.6.2 学生问卷调查结果分析 |
4.7 调查结论 |
4.7.1 教师问卷调查结论 |
4.7.2 学生问卷调查结论 |
5 人教版七、八年级“实验与探究”栏目的案例教学研究 |
5.1 研究目的 |
5.2 研究方法及对象 |
5.3 研究设计 |
5.3.1 测试卷的编制 |
5.3.2 访谈提纲的编制 |
5.4 研究的实施 |
5.5 七年级《无限循环小数化分数》的案例分析 |
5.5.1 “实验与探究”环节的课堂实录教学片断 |
5.5.2 “实验与探究”教学环节的案例分析 |
5.6 八年级《三角形中边与角之间的不等关系》的案例分析 |
5.6.1 “实验与探究”环节的课堂实录教学片断 |
5.6.2 “实验与探究”教学环节的案例分析 |
5.7 访谈结果分析 |
5.7.1 教师访谈结果分析 |
5.7.2 学生访谈结果分析 |
5.8 结论 |
6 研究结论与建议 |
6.1 研究结论 |
6.2 建议 |
6.2.1 关于“实验与探究”栏目设置方面的建议 |
6.2.2 关于“实验与探究”教学方面的建议 |
6.2.3 关于“实验与探究”栏目学习方面的建议 |
7 研究不足与展望 |
参考文献 |
附录1 “实验与探究”栏目教学情况调查问卷(教师问卷) |
附录2 “实验与探究”栏目教学情况调查问卷(学生问卷) |
附录3 《无限循环小数化分数》教学设计 |
附录4 《三角形中边与角之间的不等关系》教学设计 |
附录5 《无限循环小数化分数》检测题 |
附录6 《三角形中边与角之间的不等关系》检测题 |
附录7 教师访谈提纲 |
附录8 学生访谈提纲 |
致谢 |
(6)基于5E学习环的数学实验教学模式研究 ——以初一“图形的认识”为例(论文提纲范文)
中文摘要 |
Abstract |
一、前言 |
(一)研究背景与问题 |
1.研究背景 |
2.研究问题 |
(二)研究目的与意义 |
1.研究目的 |
2.研究意义 |
(三)研究思路与方法 |
1.研究思路 |
2.研究方法 |
二、相关研究概述 |
(一)核心概念界定 |
(二)数学实验研究综述 |
1.数学实验教学的研究现状 |
2.数学实验研究内容 |
3.相关研究综述简评 |
(三)“5E”学习环研究综述 |
1.“5E”学习环的研究现状 |
2.“5E”学习环的研究内容 |
3.相关研究综述简评 |
三、基于 5E 学习环的实验教学模式与策略探究 |
(一)基于5E学习环的数学实验模式的理论基础 |
1.建构主义学习理论 |
2.“从做中学”思想 |
3.“鱼渔欲”三位一体优化教学设计理念 |
(二)基于5E学习环的数学实验模式设计的策略 |
1.以问题为导向,提升实验主动性 |
2.以探究为主线,增强实验活动性 |
3.以技术为帮手,增强实验有效性 |
4.以激励为评价,促进实验反思性 |
5.以小组为单位,加强实验分享性 |
(三)基于5E学习环的数学实验教学模式 |
1.实验导言环节 |
2.实验目的环节 |
3.实验过程环节 |
4.实验结论环节 |
5.实验拓展环节 |
6.实验反思环节 |
四、基于5E学习环的数学实验模式的课例研究 |
(一)《几何图形》教学案例设计 |
(二) 《几何图形》教学实录与分析 |
(三)《余角与补角》教学案例设计 |
(四)《余角与补角》教学实录对比及分析 |
(五)课堂教学反思 |
1.听课教师评品 |
2.授课教师反思 |
3.学生反馈 |
五、基于5E学习环的数学实验教学模式的实证研究 |
(一)教学实验方案 |
1.实验目的 |
2.实验假设 |
3.实验对象 |
4.实验变量 |
5.实验方式 |
6.实验材料 |
7.实验步骤 |
8.实验反思 |
(二)实验数据分析及结果 |
1.前测学习成绩结果与分析 |
3.后测学习成绩的结果与分析 |
(三)实验班调查结果分析 |
(四)个别访谈小结 |
(五)数学教师调查结果分析 |
六、研究结论、反思与展望 |
(一)研究结论 |
(二)研究反思 |
(三)研究展望 |
参考文献 |
附录 |
附录1 |
附录2 关于《图形的认识》数学实验的学生调查问卷 |
附录3 七年级上册数学期中考测试卷 |
附录4 “图形的认识”学习后测试卷 |
附录5 关于《图形的认识》数学实验的老师调查问卷 |
攻读硕士学位期间发表的学术论文 |
致谢 |
(7)基于图形计算器的初中数学命题实验教学模式的研究(论文提纲范文)
摘要 |
abstract |
第一章 引言 |
1.1 研究背景 |
1.2 研究内容与意义 |
1.3 研究思路与方法 |
第二章 研究基础 |
2.1 研究现状综述 |
2.2 核心概念的界定 |
2.3 理论基础 |
第三章 研究设计 |
3.1 调查目的与对象的确定 |
3.2 调查问卷的设计 |
3.3 调查问卷的实施 |
3.4 调查问卷的效度和信度分析 |
第四章 初中数学实验与数学命题教学现状分析 |
4.1 基本信息分析 |
4.2 数学实验教学现状分析 |
4.3 数学命题教学现状分析 |
4.4 对调查问卷结果的思考 |
第五章 基于图形计算器的初中数学命题实验教学模式的建构 |
5.1 基于图形计算器的初中数学命题实验教学模式的关系结构 |
5.2 基于图形计算器的初中数学命题实验教学模式的运行程序 |
5.3 实施原则 |
5.4 基于图形计算器的初中数学命题实验教学模式的教学效果 |
第六章 基于图形计算器的初中数学命题实验教学模式的实践研究 |
6.1 实验目的与实验假设 |
6.2 实验设计 |
6.3 实验过程 |
6.4 实验结果分析 |
6.5 教学案例展示 |
第七章 结论与展望 |
7.1 研究结论与创新点 |
7.2 研究不足与展望 |
参考文献 |
附录 |
攻读硕士学位期间出版或发表论着、论文 |
致谢 |
(8)小学数学校本课程开发实践研究 ——以江苏省A学校《数学实验》课程为例(论文提纲范文)
摘要 |
Abstract |
引论 |
一、问题提出 |
二、研究意义 |
(一) 理论意义 |
(二) 实践意义 |
三、研究综述 |
(一) 关于校本课程开发研究 |
(二) 关于小学数学校本课程开发研究 |
(三) 已有研究述评 |
四、研究思路及研究方法 |
(一) 研究思路 |
(二) 研究方法 |
五、创新之处 |
第一章 基本概念与理论概述 |
一、概念界定 |
(一) 校本 |
(二) 课程 |
(三) 校本课程 |
(四) 小学数学校本课程开发 |
二、理论基础 |
(一) “目标模式” |
(二) “实践模式” |
第二章 小学《数学实验》校本课程开发的环境分析 |
一、学校概况 |
(一) 办学条件 |
(二) 文化传统 |
二、开发队伍 |
(一) 领导小组 |
(二) 教师小组 |
(三) 开发指导小组 |
三、学生情况 |
(一) 认知水平 |
(二) 学生需求 |
第三章 小学《数学实验》校本课程研究设计 |
一、课程目标设置 |
(一) 知识与技能 |
(二) 过程与方法 |
(三) 情感态度与价值观 |
二、课程开发原则 |
(一) 实践性 |
(二) 自主性 |
(三) 趣味性 |
三、课程开设形式 |
四、课程内容选择 |
(一) 第一学段 |
(二) 第二学段 |
(三) 第三学段 |
第四章 小学《数学实验》校本课程的实施与评估 |
一、课程的实施 |
(一) 实施对象 |
(二) 实施时间 |
(三) 实验案例及评析 |
二、课程的评价 |
(一) 评价主体 |
(二) 评价内容 |
(三) 评价方式 |
第五章 反思及展望 |
一、反思 |
(一) 对小学数学校本课程开发环境的反思 |
(二) 对小学数学校本课程目标与内容设计的反思 |
(三) 对小学数学校本课程实施与评估的反思 |
二、展望 |
参考文献 |
附录一: 小学生数学学习需求调查问卷 |
附录二: 小学数学校本课程开发调查问卷 |
附录三: 小学数学校本课程开发的教师访谈提纲 |
致谢 |
(9)TPMK视角下信息技术深度融合初中数学教学的视频课例研究 ——以2019年广西“一师一优课”为例(论文提纲范文)
中文摘要 |
abstract |
第1章 绪论 |
一、研究背景与问题 |
(一)研究背景 |
(二)研究问题 |
二、研究目的与意义 |
(一)研究目的 |
(二)研究意义 |
第2章 核心概念界定及研究综述 |
一、相关概念界定 |
(一)信息技术 |
(二)信息技术深度融合学科教学 |
(三)视频课例研究 |
二、研究综述 |
(一)视频课例研究综述 |
(二)信息技术融合数学学科教学研究综述 |
(三)文献述评及启示 |
第3章 研究设计 |
一、相关理论基础 |
(一)TPMK理论 |
(二)SAMR模型理论 |
(三)教学结构理论 |
(四)交互影响距离理论 |
二、研究对象的选取与确定 |
(一)课例选取说明 |
(二)视频课例的整理分类 |
三、研究工具 |
(一)编码体系 |
(二)编码分析软件 |
四、研究方法 |
五、研究思路 |
第4章 编码系统的制定与实施 |
一、《初中数学教师TPMK课堂编码表》设计依据 |
(一)初中阶段的数学教育 |
(二)《中小学教师信息技术应用能力标准》分析 |
二、《初中数学教师TPMK课堂编码表》的制定 |
三、《初中数学教师TPMK课堂编码表》的实施 |
四、信效度检验 |
第5章 广西初中数学优课课例分析与结果 |
一、广西初中数学课例视频教学资源数量情况分析 |
(一)平台中不同级别优课教学资源数量情况分析 |
(二)不同教学模块教学资源使用情况分析 |
二、基于TPMK视角的信息技术融合初中数学教学情况分析 |
(一)整合技术的初中数学教学理念分析 |
(二)课堂观察的实施结果与分析 |
三、部级优课课例《信息技术应用——探究旋转的性质》分析 |
(一)教学路线图 |
(二)《信息技术应用-探索旋转的性质》教师TPMK行为表现统计分析 |
(三)《信息技术应用—探索旋转的性质》教学过程局部分析 |
(四)小结与启示 |
第6章 研究结论与反思 |
一、研究结论 |
(一)教学资源使用情况方面 |
(二)不同级别优课教师的TPMK特征方面 |
二、研究建议 |
三、研究不足与反思 |
四、研究展望 |
参考文献 |
附录1 初中数学教师 TPACK 观察记录表 |
附录2 探索旋转的性质(第一课时) |
攻读硕士学位期间发表的论文 |
致谢 |
(10)初中数学实验教学现状的调查与研究(论文提纲范文)
摘要 |
Abstract |
第1章 绪论 |
1.1 问题的提出 |
1.2 文献综述 |
1.2.1 国外研究现状 |
1.2.1.1 数学实验的起源 |
1.2.1.2 中学数学实验教学的发展 |
1.2.2 国内研究现状 |
1.2.2.1 数学实验教学的发展历程及相关研究 |
1.2.2.2 对数学实验特点的研究 |
1.2.2.3 总结 |
1.3 本研究要解决的问题 |
1.4 研究意义 |
第2章 研究的理论基础 |
2.1 数学实验的内涵 |
2.1.1 数学实验教学的作用 |
2.1.2 数学实验教学的原则 |
2.1.2.1 趣味性原则 |
2.1.2.2 实用性原则 |
2.1.2.3 主体性原则 |
2.2 人本主义学习理论 |
2.3 建构主义理论 |
第3章 研究方法设计 |
3.1 文献研究法 |
3.2 调查研究法 |
3.2.1 调查目的 |
3.2.2 问卷的结构 |
3.2.3 调查的实施 |
3.3 访谈研究法 |
3.3.1 访谈目的 |
3.3.2 访谈对象 |
3.3.3 访谈提纲 |
第4章 问卷调查结果与分析 |
4.1 教师问卷调查结果与分析 |
4.1.1 教师对数学实验的认识 |
4.1.1.1 教师对数学实验概念的认识 |
4.1.1.2 数学实验应用于教学的必要性 |
4.1.2 数学实验教学的开展情况 |
4.1.2.1 开展频率与教学内容 |
4.1.2.2 数学实验所需教学环境 |
4.1.2.3 数学实验教学中师生的互动 |
4.1.3 数学实验对师生的影响 |
4.1.3.1 数学实验对学生产生的影响 |
4.1.3.2 数学实验对教师的影响 |
4.2 学生问卷调查结果与分析 |
4.2.1 关于数学学习 |
4.2.1.1 数学学习的兴趣 |
4.2.1.2 数学学习的困难 |
4.2.1.3 数学的作用 |
4.2.2 关于数学实验 |
4.2.2.1 数学实验的兴趣 |
4.2.2.2 数学实验课的参与 |
4.2.2.3 数学实验课的收获 |
4.3 初步结论 |
第5章 影响数学实验开展的因素 |
5.1 教师访谈记录 |
5.2 访谈结果分析 |
5.2.1 师生的素养对数学实验的影响 |
5.2.2 教学的环境对数学实验的影响 |
5.2.3 教学的内容与过程对数学实验的影响 |
第6章 改进数学实验教学策略的提出 |
6.1 改变教师观念,提升师生素养 |
6.2 完善教研活动,创设实验环境 |
6.3 拓展实验内容,优化教学过程 |
第7章 结论与反思 |
7.1 研究结论 |
7.2 反思 |
参考文献 |
附录一 教师问卷 |
附录二 学生问卷 |
致谢 |
四、数学实验成为数学课堂学习方式的思考(论文参考文献)
- [1]巧借数学实验,培养学生思维[J]. 柳剑军. 数学学习与研究, 2021(35)
- [2]数学实验在高中数学探究教学中的应用[J]. 陶政国,李海龙. 读写算, 2021(29)
- [3]e-数学实验室环境下高中数学“创课导学”教学法的理论与实践[J]. 张享发,宋程. 广西教育, 2021(36)
- [4]基于Hawgent皓骏动态数学软件的数学实验教学模式研究 ——以“一次函数图象与性质”为例[D]. 林宇杰. 广西师范大学, 2021(09)
- [5]人教版初中数学“实验与探究”栏目教学实施现状及案例研究[D]. 刘钊伶. 南宁师范大学, 2021(02)
- [6]基于5E学习环的数学实验教学模式研究 ——以初一“图形的认识”为例[D]. 黄诗坤. 广西师范大学, 2021(09)
- [7]基于图形计算器的初中数学命题实验教学模式的研究[D]. 王蕊. 淮北师范大学, 2021(12)
- [8]小学数学校本课程开发实践研究 ——以江苏省A学校《数学实验》课程为例[D]. 朱昕茹. 扬州大学, 2021(09)
- [9]TPMK视角下信息技术深度融合初中数学教学的视频课例研究 ——以2019年广西“一师一优课”为例[D]. 康雯. 广西师范大学, 2021(09)
- [10]初中数学实验教学现状的调查与研究[D]. 王康宁. 扬州大学, 2021(09)
标签:数学论文; 数学实验论文; 无限循环小数化分数论文; 数学小论文论文; 数学文化论文;