保护性耕作小麦、玉米、大豆田除草问题及对策

保护性耕作小麦、玉米、大豆田除草问题及对策

一、保护性耕作条件下小麦、玉米、大豆田间杂草防治存在的问题及对策研究(论文文献综述)

杜玉贤[1](2021)在《农艺措施对冀西北坝上燕麦田杂草组成及饲草产量的影响》文中研究说明冀西北坝上地区位于华北农牧交错带,属于典型的高原、半干旱区域;受寒旱气候环境与匮乏水土资源影响,农田为短季作物一年一熟。牧草生长季短,草地初级生产力水平低下,饲草短缺已经成为坝上地区畜牧养殖产业快速发展的主要限制性因素之一。根据坝上地区区位优势,利用6~9月雨热同季,光照丰富,发展燕麦饲草生产,提高当地燕麦饲草产量和品质,为牲畜提供稳定而优质的饲草,建立高标准燕麦干草生产基地,促进当地畜牧业高质量发展。通过研究不同耕作措施和播期对燕麦田杂草组成、群落特征和饲草产量的影响,创新燕麦绿色栽培技术,为冀西北寒旱区饲用燕麦生产提供技术支撑。主要研究结果如下:1、不同耕作措施燕麦田杂草组成和群落特征:耕作方式对燕麦田的杂草生物量有显着影响,浅旋耕杂草生物量始终处于劣势,是免耕杂草生物量的17.60%~69.67%,是翻耕杂草生物量的41.83%~82.01%。耕作方式对燕麦田的杂草优势种影响不显着,翻耕、浅旋耕以及免耕燕麦田杂草的主要优势种均为灰绿藜(Chenopodium glaucum L.),所占比例分别为 66.8%、63.1%、82.1%。2、不同耕作措施燕麦田饲草产量变化:翻耕、浅旋耕和免耕燕麦饲草干重都在抽穗 30d 时达最高值,分别为 6114.5kg/hm2、7961.8kg/hm2、4568.8kg/hm2。浅旋耕和翻耕燕麦鲜草在抽穗后20d时产量最高,分别为22018.8kg/hm2、15116.7kg/hm2,相应含水率分别为66.8%、69.4%。免耕燕麦鲜草产量在抽穗期最高,为11400kg/hm2,但含水率较高,为79.7%;在抽穗10d后含水率下降到65.6%,此时燕麦鲜草产量为10912.8kg/hm2。3、不同播期燕麦田杂草组成和群落特征:播期显着影响了燕麦田杂草群落结构,播期Ⅰ(5月24日)燕麦田的杂草以喜凉的灰绿藜为主,随播期推迟相对喜温的苋菜(Amaranthus tricolor)、狗尾草(Setaria viridis)、小画眉草(Gramineae)、稗草(Echinochloa crusgalli)等杂草成为优势种。播期Ⅰ与播期Ⅲ(6月23日)燕麦田植物群落的Shannon多样性指数(H’)、Pielou均匀度指数(J)、Simpson多样性指数(D)、Margalef物种丰富度指数(DMG)等均较低,5月24日播种有利于提高燕麦饲草产量、燕麦对田间杂草竞争优势明显。4、不同播期燕麦饲草产量变化:播期Ⅰ和播期Ⅱ(6月8日)燕麦草干重在抽穗30d时达最高值,分别为7961.8kg/hm2、6307.5kg/hm2;播期Ⅲ由于播种晚,在抽穗20d收获时干草产量为4421.1kg/hm2,分别为播期Ⅰ和播期Ⅱ的55.5%、65.1%。播期Ⅰ与播期Ⅱ燕麦鲜草生物量积累总体呈“双峰型”变化特征,第一峰值在抽穗期,第二峰值在抽穗后20~30d。播期Ⅰ第二峰值(抽穗后20d)时产量为22018.4kg/hm2,播期Ⅱ(抽穗后30d)为16703kg/hm2,相应含水率分别为69.4%、62.2%。播期Ⅲ燕麦鲜草产量在抽穗后20d收获最高,为13067.1kg/hm2,含水率66.2%。5、刈割时间对燕麦饲草品质的影响:播期I燕麦饲草可以在抽穗20d和30d时对燕麦饲草进行刈割,抽穗20d时虽然燕麦饲草产量不能达到生育期内最高值但是此时燕麦饲草质量较高,为二级,抽穗30d时燕麦饲草的产量达到最高且符合燕麦饲草的品质要求;播期Ⅱ燕麦草抽穗20d前,ADF(酸性洗涤纤维)含量大于40%,影响燕麦饲草质量,抽穗20d后燕麦草质量等级均为三级,产量在抽穗后40d时达最高值,建议此时收获。播期Ⅲ燕麦草无法完成生育进程且产量较低,故在抽穗20d时进行刈割可以获得最大干草产量,为4421.1kg/hm2。

侯守印[2](2020)在《垄作原位免耕播种机侧向多级残茬处理关键技术及装备研究》文中认为耕地土壤质量是保证粮食产量和品质的关键因素之一。中国耕地长期高负荷产出,土壤肥力严重下降,土壤侵蚀速度加剧,水土流失面积逐年扩大,粮食产量增长出现瓶颈。保护性耕作是以土壤质量为核心的新型农业耕作制度和技术体系,目标是保护、改善并有效利用自然资源,实现经济、生态、社会意义上的农业可持续生产。残茬地表覆盖还田是保护性耕作技术重要组成部分,具有改良土壤结构,增加有机质含量,提高土壤抗旱、蓄水保墒能力,降低风蚀水蚀,减少化肥、农药施用量等优点。残茬地表覆盖还田核心是技术模式和机具装备。针对黑龙江省特有的寒温带大陆季风性气候特点和规模化、化集约化生产现状,研制一种适合玉米残茬全覆盖条件,配套宽幅原位免耕播种施肥装置实现残茬地表覆盖还田和免耕播种施肥功能的残茬处理装置对于土壤保护和粮食增产至关重要。在黑龙江省垄作玉米残茬全覆盖条件下,以实现高速、宽幅、原位免耕播种,残茬垄间覆盖还田为原则,对侧向多级残茬处理关键技术及装置进行研究,包括秸秆清理技术、根茬清除技术、残茬侧向多级运移技术和残茬破碎抛撒调控技术等,采用理论分析、数学建模、动力学仿真、离散元仿真等方法对残茬处理关键机理进行深入探究,在其基础上采用二次回归正交旋转中心组合试验、正交试验、模糊综合评价等方法对残茬处理装置及关键零部件的结构与工作参数进行优化组合试验,为残茬处理装置设计奠定理论与试验基础。主要研究内容与结果包括:(1)侧向多级残茬处理技术方案设计针对黑龙江省地区春播季玉米残茬全覆盖条件下免耕播种和残茬地表覆盖还田作业,设计一种与宽幅原位免耕播种施肥装置配套的侧向多级残茬处理技术方案,实现垄作玉米茬地的清秸、除茬、残茬侧向运移、残茬适度破碎及整幅宽垄间残茬覆盖还田等功能,为播种装置将种子播种在无残茬、湿润、通透性良好的土壤中创造条件,形成“下实上虚”的种床结构,解决寒区春季玉米残茬全量地表覆盖还田阻碍地温回升,导致作物产量降低问题,并与现有宽幅播种施肥装置配套实现10.8 km/h高速复式作业。(2)定轴式种床构建装置研究设计一种在玉米残茬全覆盖条件下,能够完成清秸、除茬和残茬侧向输送功能的定轴式种床构建装置,探明清秸、除茬机理,对影响工作性能的结构与工作参数进行试验研究。为探索侧向清秸刀对机组作业过程中秸秆缠绕度、振动强度、功耗和覆秸均匀度的影响,对侧向清秸刀清秸机理进行了分析,建立滑切面工作曲线数学模型,完成滑切面工作曲线设计,确定影响侧向清秸刀工作性能的关键结构与工作参数。应用四因素三水平正交试验方法,选取初始半径、起始滑切角、刀辊角速度和机组作业速度为影响因素,秸秆缠绕度、振动强度、当量功耗和覆秸均匀度为评价指标,对影响侧向清秸刀作业性能的结构和工作参数组合进行优化分析,结果表明:初始半径200 mm、起始滑切角30°、刀辊角速度42 rad/s、机组作业速度7.2 km/h条件下,无秸秆缠绕,振动强度为159 m/s2,当量功耗为4.9 k W,覆秸均匀度为0.075,对比现有侧向清秸刀振动强度降低46.5%,当量功耗降低29.6%,工作过程中未出现堵塞现象;针对原位免耕播种施肥作业过程中残留玉米根茬和须根导致播种施肥触土部件堵塞、播种质量降低问题,设计一种玉米根茬清除用侧向清茬刀,对侧向清茬刀清茬、输送、抛扔等作业过程进行分析,建立正切刃曲线数学模型,完成侧向清茬刀结构及正切刃工作曲线设计,确定影响其作业性能的关键结构与工作参数。应用三因素三水平正交试验和模糊综合评价方法,选取清茬弯角、正切刃宽度、侧向清茬刀角速度为影响因素,根茬清除率、土壤扰动率、当量功耗为性能指标,对影响作业性能的侧向清茬刀结构和工作参数组合进行优化分析,结果表明:在作业速度7.2 km/h条件下,清茬弯角0.86 rad、正切刃宽度50 mm、侧向清茬刀角速度52 rad/s时,根茬清除率为94.3%,土壤扰动率为54.3%,当量功耗为3.4 k W。(3)残茬单级运移机理分析及整流装置研究针对玉米残茬侧向多级运移过程滞留,影响播种施肥区间清秸率,制约机具工作质量和作业效率提升的问题。探明玉米残茬单级运移机理,设计玉米残茬侧向运移整流装置,确定影响整流装置工作性能的关键结构参数。采用二次回归正交旋转中心组合试验方法,在EDEM软件中构建的玉米残茬侧向运移整流装置试验平台上,以进入角、整流包角、整流半径为试验因素,清秸率、行间清秸一致性为性能评价指标进行虚拟仿真参数组合优化试验,结果表明:进入角60°、整流包角105°、整流半径425 mm,此时清秸率为92.4%,行间清秸一致性为93.2%。根据虚拟仿真优化参数组合进行整流装置加工和田间验证试验,清秸率为93.1%,行间清秸一致性为92.5%,与虚拟仿真试验结果基本吻合。(4)基于侧向清秸原理的残茬破碎抛撒装置研究针对玉米残茬侧向多级运移宽幅作业,提出一种玉米残茬适度破碎复合抛撒垄间地表还田方案,设计一种残茬破碎抛撒装置,能够完成玉米残茬的捡拾、破碎、抛撒等作业工序。对残茬捡拾、破碎和抛撒机理进行探究,建立相关数学模型,确定影响残茬捡拾率的主要因素为破碎长刀回转直径和破茬长刀旋转角速度,影响残茬破碎率的主要因素为破碎长刀长度、破碎长刀质量、破碎长刀刃角、破碎长刀刃口厚度、破碎长刀质心位置、刀座回转半径和破碎长刀旋转角速度,影响残茬抛撒的主要因素为破碎长刀回转直径、破茬长刀旋转角速度、负压叶片长度、负压叶片宽度和负压叶片倾角。针对影响残茬破碎性能的关键结构与工作参数进行离散元仿真试验,以破碎长刀刃角、破碎长刀刃口厚度、破碎长刀质量、破碎长刀转速为试验因素,残茬捡拾率、残茬破碎率、功耗为性能评价指标进行组合试验,最优参数组合为:破碎长刀刃角15°~18°、破碎长刀刃口厚度0.51~0.62 mm、破碎长刀质量0.3 kg、破碎长刀转速1415 r/min时,残茬捡拾率大于80%、残茬破碎率大于80%,功耗小于7 k W。采用CFD-DEM耦合仿真方法,对残茬破碎抛撒装置内玉米残茬颗粒群的运动特性进行分析,明晰负压叶片可提高残茬捡拾、输送和抛撒效率,能够实现玉米残茬垄间地表覆盖还田。为探究残茬破碎抛撒装置负压叶片结构参数对残茬捡拾率、垄间覆秸一致性和功耗的影响,采用三因素五水平二次回归正交旋转中心组合试验方法,以负压叶片长度、负压叶片宽度、负压叶片倾角为试验因素,残茬捡拾率、垄间覆秸一致性、功耗为性能评价指标进行仿真试验,试验结果表明:负压叶片宽度为27.5~41.0 mm、负压叶片倾角为121°~127°、负压叶片长度为53 mm时,残茬捡拾率大于85%、残垄间覆秸一致性大于75%,功耗小于7.6 k W。(5)残茬覆盖技术对土壤物理结构和产量影响为探究残茬覆盖技术对黑龙江地区耕层土壤结构特性和作物产量的影响,2017~2019年在齐齐哈尔市克山县北联乡新兴村(第三积温带)实施连续3年大田定位对比试验,设置垄间残茬覆盖免耕(MRNT)、秸秆离田免耕(SONT)、秸秆归行免耕(SRNT)、秸秆覆盖条耕(SCST)和翻耙整地(CK)5个处理,分析5种耕作技术模式对土壤容重、土壤孔隙度、土壤有机质含量和作物产量的影响。试验研究表明,对0~25 cm土层土壤容重影响,MRNT、SRNT、SCST之间无显着性差异,与SONT之间均存在显着性差异;对25~50 cm土层土壤容重影响,MRNT、SONT、SRNT之间无显着性差异,与SCST之间均存在显着性差异,MRNT、SONT、SRNT、SCST与CK之间均存在显着性差异;对50~75 cm土层土壤容重影响,MRNT、SONT、SRNT、SCST之间无显着性差异,SONT、SRNT、SCST与CK之间无显着性差异,MRNT与CK之间存在显着性差异。对0~25 cm土层土壤孔隙度的影响,MRNT、SRNT、SCST之间无显着性差异,而与SONT、CK之间均存在显着性差异,SONT与CK之间无显着性差异;对25~75 cm土层土壤孔隙度的影响,MRNT、SONT、SRNT、SCST之间无显着性差异,而与CK之间均存在显着性差异;对0~50 cm土层土壤有机质含量的影响,MRNT、SRNT、SCST之间无显着性差异,而与SONT、CK之间均存在显着性差异,SONT与CK之间无显着性差异;对50~75 cm土层土壤有机质含量的影响,MRNT、SONT、SRNT、SCST、CK之间无显着性差异。各残茬地表覆盖还田耕种模式随耕种年份对0~50 cm土层土壤容重、土壤孔隙度和土壤有机质含量均具有不同程度影响,MRNT和SRNT对改良土壤结构效果较好,MRNT、SRNT、SCST对提高土壤有机质含量效果较好。MRNT、SRNT耕种模式增产效果显着,2017年MRNT、SRNT与SONT、SCST之间均存在显着性差异,MRNT与SRNT之间无显着性差异,MRNT、SRNT比CK玉米产量分别增加12.6%、10.6%;2018年MRNT、SRNT、SCST与SONT、CK之间均存在显着性差异,MRNT、SRNT比CK大豆产量分别增加7.6%、7.2%;2019年MRNT、SRNT与SONT、CK之间均存在显着性差异,MRNT、SRNT比CK玉米产量分别增加9.2%、10.4%。

孔德杰[3](2020)在《秸秆还田和施肥对麦豆轮作土壤碳氮及微生物群落的影响》文中进行了进一步梳理秸秆还田和优化施肥措施是减少化肥施用、提升土壤质量、增强土壤碳汇功能的有效途径,对于提高土壤氮素高效利用和保持农业绿色循环高质量发展具有重要意义。秸秆还田和施肥对长期麦豆轮作土壤中碳氮元素组分变化规律以及对土壤细菌、真菌微生物群落多样性季节性变化的影响,目前已成为亟待解决的科学问题。本研究以西北农林科技大学北校区科研试验基地农作制度长期定位试验为依托,试验处理设置为:秸秆还田(NS:秸秆不还田、HS:秸秆半量还田、TS:秸秆全还田处理)和施肥处理(NF:不施肥、0.8TF:优化施肥、TF:传统施肥)的两因素三水平随机区组试验。采用高通量测序和冗余分析(RDA)等技术方法,研究了秸秆还田和施肥对小麦、大豆不同生育时期的麦豆轮作系统土壤中氮素、碳素不同组分和土壤细菌、真菌群落结构多样性等指标的季节性动态变化规律的影响。为筛选节本高效、地力提升的秸秆还田模式提供理论依据和技术支撑。取得了如下结论:1、秸秆还田和施肥促进了长期麦豆轮作种植模式下土壤氮素含量的增加秸秆还田和施肥促进了麦豆轮作种植模式下土壤中的全氮、铵态氮、硝态氮含量提升,土壤硝态氮含量在秋季、冬季含量较高,而春季3~5月份小麦生长旺盛期含量较低。优化施肥增加了土壤微生物氮含量,常规施肥抑制了土壤微生物氮含量。在秸秆腐解初期全量还田处理土壤中铵态氮含量低于半还田处理。土壤中硝态氮含量、微生物氮含量及硝态氮占总氮的比例、微生物氮占土壤总氮的比值都随着秸秆还田量的增加而增加,不同秸秆还田处理间土壤微生物氮含量有显着性差异,并且表层土壤微生物量氮大于下层土壤微生物量。9个处理组合中,0.8TF+TS处理的全氮、微生物量氮平均含量最高,分别为1.06 g/kg、36.59 mg/kg,TF+TS处理铵态氮、硝态氮平均含量最高,分别为2.37、15.93mg/kg。2、秸秆还田和施肥提升了麦豆轮作种植模式下土壤碳素含量秸秆还田和施肥增加了麦豆轮作种植模式下土壤中的有机碳、溶解性全碳、溶解性有机碳、无机碳和微生物碳含量。土壤无机碳占溶解性总碳的比值随着施肥量的增加呈先降低后增加的趋势。微生物碳、溶解性有机碳含量占土壤有机碳比值随着秸秆还田量的增加而增加,土壤溶解性总碳占土壤有机碳比值、溶解性无机碳含量占土壤有机碳比值随着还田量的增加而随着减少,土壤微生物量碳占土壤有机碳含量随着还田量的增加有先增加后减少的趋势。土壤中的碳氮比随着施肥量的增加随着减少,土壤中微生物碳氮比随着施肥量的增加而增加。与施肥处理变化趋势相反,增施秸秆导致土壤碳氮比增加,微生物碳氮比减少。9个处理组合中,TF+TS处理的土壤有机碳、溶解性有机碳、微生物碳平均含量最高分别为12.14 g/kg、95.70mg/kg,345.53mg/kg,溶解性全碳平均含量0.8TF+TS处理最高为198.90 mg/kg,溶解性无机碳平均含量0.8TF+NS处理最高为119.73 mg/kg。3、秸秆还田和施肥措施改变了长期麦豆轮作土壤微生物群落结构多样性土壤中细菌、真菌菌群多样性chao1指数、ACE指数、Shannon指数随着施肥量增加有减少的趋势。Simpson指数随着秸秆还田量的增加而减少。不同处理门水平上菌群数量年内动态变化表现为冬季数量最高,在小麦收获后大豆播种前最低。不同处理下土壤细菌中的变形菌门、酸杆菌门、芽单胞菌门、放线菌门是土壤中的优势菌种,平均相对丰度分别为28.06%、24.05%、13.90%、10.68%。子囊菌门是土壤真菌中的优势菌门,优化施肥降低了子囊菌门、担子菌门、接合菌门的平均相对丰度,增加了壶菌门相对丰度;常规施肥增加了子囊菌门、接合菌门、壶菌门的相对丰度,降低了担子菌门的相对丰度。秸秆还田处理降低了子囊菌门、接合菌门的相对丰度,增加了担子菌门相对丰度。4、土壤微生物多样性对土壤氮素、碳素变化的响应RDA分析显示:土壤细菌、真菌的Simpson指数、shannon指数、ACE指数、Chao1指数之间具有很好的相关性,并且与无机碳含量呈正相关关系,与土壤水分含量、全氮含量、铵态氮含量、硝态氮含量、土壤p H值、可溶性总有机碳含量及土壤有机碳呈负相关关系。变形菌门是土壤细菌相对丰度最高的菌群,与土壤p H值极显着负相关,芽单胞菌门与土壤环境中微生物碳、氮含量呈正相关。土壤真菌中子囊菌门相对丰度最高,担子菌门与土壤有机碳含量呈正相关关系。分析显示:碳氮元素化学计量比、是否种植作物是影响土壤中土壤细菌、真菌门水平上的菌群结构差异的主要因素。综上所述:长期秸秆还田配合施肥处理对麦豆轮作下土壤碳氮含量与农田肥力提升有明显的促进作用。0.8TF+TS组合处理全氮、微生物氮、溶解性碳含量最高,虽然产量比TF+TS组合处理减产了0.55%,化肥施用量却减少了20%,是一种节本增效的秸秆还田模式。本研究发现土壤细菌群落结构季节性变化影响不大,真菌受温度影响较大,该变化是由土壤p H值、碳氮各组分之间的比值以及地上作物长势等诸多因素相互影响造成的。秸秆还田和施肥对长期麦豆轮作种植模式下土壤碳氮含量和土壤细菌、真菌群落多样性及在门水平上相对丰度的季节动态变化及两者之间的响应关系是本研究的创新点。

杜建斌[4](2020)在《旱灾对我国粮食主产省粮食产量的影响及抗旱对策研究》文中研究指明旱灾是我国主要自然灾害之一,也是影响我国粮食安全的主要自然灾害之一。13个粮食主产省粮食产量占全国总产量的75%以上,分析建国以来我国13个粮食主产省粮食生产情况的变化趋势及旱灾对粮食产量的影响,对提高粮食主产省的抗旱减灾能力具有重要意义。本研究通过收集建国以来我国13个粮食主产省农作物播种面积、旱灾受灾、成灾面积、粮食产量等数据,系统的分析13个粮食主产省粮食生产变化趋势和旱灾对粮食产量的影响,并以部分省份为例总结不同区域的抗旱减灾措施,最后基于全球气候模型,模拟预测RCP4.5和RCP8.5情景下2031-2060年我国全国范围及粮食主产区不同干旱等级发生的频率及不同干旱等级所占比例,预测未来情景下我国主要粮食主产区干旱的演变趋势,论文主要结论如下:(1)建国以来我国东北地区旱灾受灾和成灾面积均呈逐渐增加的趋势,旱灾受灾率和成灾率均高于其他三个粮食主产区,其中内蒙古省粮食平均受灾和成灾率均最高,其次为辽宁。东北地区的黑龙江、吉林、内蒙古三省的粮食播种面积均呈逐渐增加的趋势,黄淮海地区粮食播种面积基本保持稳定。长江中下游和西南地区,旱灾显着降低粮食单产和总产,旱灾受灾率和成灾率与粮食单产和总产均呈负相关。大部分粮食主产省旱灾受灾率和成灾率与粮食单产和总产的年变化率负相关达到显着或极显着水平,旱灾受灾率和成灾率较大的年份与粮食单产和总产减产较大的年份相对应。(2)不同的种植区域有不同的抗旱减灾措施,东北地区针对玉米主要有育苗移栽、垄作、薄膜覆盖和免耕等抗旱措施,针对大豆有调整耕作方式和应急补灌等抗旱技术。黄淮海地区针对冬小麦、夏玉米主要有秸秆覆盖、应急补灌技术和优化灌溉措施等抗旱减灾技术。西南地区四川省抗旱减灾措施主要有合理种植制度和作物布局、合理的耕作技术、调整合适的播期和管理技术以避开旱灾的影响以及灾后的减灾农艺措施等四个方面。长江中下游的湖南省,年降雨量较大,但易发生季节性干旱,在湖南省主要采用避旱减灾种植模式,使用化学制剂调控避旱减灾技术以及干旱适应性防控高产栽培技术等。(3)在气候持续变暖情况下我国干旱发生将进一步加剧,本文基于全球气候变化模型对我国2031-2060干旱程度进行模拟预测,结果表明在RCP4.5情景下我国大部分地区干旱发生频率均大于15%。东北、黄淮海、西南、华南、长江中下游地区干旱发生频率均在15%以上,其中黑龙江北部、山东南部、江苏、广东、福建、江西、四川、陕西和西藏南部等地干旱发生频率在25%以上。在RCP8.5情景下我国不同地区干旱发生频率差异较大,西北大部分地区干旱发生频率低于5%,东北、黄淮海、西南、华南和长江中下游等地区干旱发生频率大于30%,其中黑龙江东北部、辽宁南部、山东南部、江苏北部、贵州、云南、广西、广东、福建等部分地区干旱发生频率大于40%。RCP8.5情景下干旱频率和干旱程度比RCP4.5情景高,对我国不同粮食主产区干旱预测表明在RCP8.5情景下东北地区、黄淮海地区和长江中下游地区干旱频率和程度比RCP4.5情景下进行加重,而西南地区在RCP8.5情景下干旱比RCP4.5情景下有所减缓。

鲍恩俣[5](2020)在《喀斯特石漠化环境混农林土壤保墒与农艺截留及监测评价研究》文中研究说明喀斯特地区石漠化治理过程中常见的混农林生态恢复模式,其混农林土壤保墒及农艺截留技术是短期内缓解石漠化地区干旱缺水的有效途径。为了阐明不同喀斯特地区混农林保墒土壤物理性质与水分变化规律,探究产流产沙量对降雨的响应及各措施的减流减沙作用。在代表中国南方喀斯特生态环境总体结构的贵州高原,选择极具典型性与代表性的毕节撒拉溪、关岭-贞丰花江和施秉喀斯特为研究区。在2017-2020年期间,采用文献分析法和调研走访法确定毕节撒拉溪研究区的核桃(Juglans regia L.)+玉米(Zea mays Linn.)和核桃(Juglans regia L.)+大豆(Glycine max(Linn.)Merr.),关岭-贞丰花江研究区的花椒(Zanthoxylum bungeanum Maxim.)+山豆根(Euchresta japonica Hook.f.ex Regel)和花椒(Zanthoxylum bungeanum Maxim.)+花生(Arachis hypogaea Linn.),施秉喀斯特研究区的梨(Pyrus pyrifolia‘Whangkeumbae’)+大豆(Glycine max(Linn.)Merr.)和梨(Pyrus pyrifolia‘Whangkeumbae’)+太子参(Pseudostellaria heterophyllaa(Miq.)Pax ex Pax et Hoffm)6种混农林为研究对象,采用穴状整地+保水剂、穴状整地+保水剂+枯枝落叶、穴状整地+保水剂+秸秆三种措施分别作用于研究对象,研究区共设置14个径流小区和6个实验样地,对14个径流小区共埋设84个土壤水分监测仪(5TE),对6个实验样地采用便携式5TE共监测360次,监测12场典型产流产沙性降雨,共收集252个泥沙样,对20个样地共采集360个环刀土样进行实验室物理属性分析,结合气象站数据,采用单因素方差分析、径流小区监测、变异系数、线性拟合和层次分析法,揭示不同喀斯特地区混农林土壤保墒物理性质和水分变化规律,阐明农艺截留机制,提出混农林土壤保墒与农艺截留技术,集成混农林土壤保墒与农艺截留技术体系并进行示范应用验证,同时构建混农林土壤保墒与农艺截留监测评价指标体系,建立监测评价模型并进行成效综合评价,为喀斯特石漠化地区混农林土壤保墒与农艺截留及监测评价提供科技参考。得出如下结论:(1)三个研究区的混农林土壤在保墒前后物理性质差异明显(除对照组外),与保墒前相比,保墒后每个研究区的混农林的土壤容重均有不同程度的增加,增加幅度表现为:毕节撒拉溪研究区(0.05 g.cm-3)>关岭-贞丰花江研究区(0.04 g.cm-3)>施秉喀斯特研究区(0.03 g.cm-3),田间持水量和毛管持水量均上升,总孔隙度和毛管孔隙度均下降;与对照组相比,每种保墒处理均降低了各层土壤容重,土壤容重表现为:穴状整地+保水剂+秸秆<穴状整地+保水剂+枯枝落叶<穴状整地+保水剂,但差异不显着(P>0.05),增加了田间持水量、毛管持水量、总孔隙度和毛管孔隙度,均差异显着(P<0.05),其中穴状整地+保水剂+秸秆处理增幅最大。总体而言,穴状整地+保水剂+秸秆对混农林土壤结构具有较好的改善作用,其次为穴状整地+保水剂+枯枝落叶,最后为穴状整地+保水剂。研究结果可为石漠化地区土壤改良提供理论参考依据。(2)不同研究区的混农林经不同保墒措施后,0-15 cm、15-30 cm土层的土壤含水率有不同程度的提高,且均高于对照组,土壤含水率随土壤深度而增加;土壤含水率的变异系数和标准差均小于对照组,且随土壤深度的增加而减小。0-30 cm土层土壤含水率表现为:穴状整地+保水剂+秸秆>穴状整地+保水剂+枯枝落叶>穴状整地+保水剂,变异系数和标准差的表现与之相反。总体而言,不同保墒措施可增加混农林土壤含水率和剖面土壤水分的稳定性,其中穴状整地+保水剂+秸秆处理土壤分层含水率最高,效果最好。通过对三个研究区的对比,发现施秉喀斯特研究区梨+大豆施以秸秆保墒后0-30cm土层土壤水分最高(32.98%),土壤水分变异系数最小(2.3%),稳定性最好。(3)不同研究区混农林农艺截留措施均具有一定的减流减沙作用,且产流产沙量与降雨量呈正相关关系,在同一场降雨下的产流产沙量表现为对照组>穴状整地+保水剂>穴状整地+保水剂+枯枝落叶>穴状整地+保水剂+秸秆,而减流减沙作用与之相反,得出穴状整地+保水剂+秸秆的减流减沙作用最好。通过对比二个研究区不同混农林农艺截留作用,得出同种措施下关岭-贞丰花江研究区的产流产沙量比施秉喀斯特研究区的多,但关岭-贞丰花江研究区的减流减沙作用优于施秉喀斯特研究区。(4)运用层次分析法构建适用于喀斯特石漠化地区混农林土壤保墒及农艺截留效益监测评价体系。该指标体系包括目标层、准则层和指标层3层体系结构,共3类评价指标的11项子指标,并对三个示范区进行效益综合评价,结果显示混农林土壤保墒及农艺截留技术对地区生态效益、经济效益和社会效益均有积极的促进作用。2019年生态效益、经济效益和社会效益均比2018年有明显的提高,提高范围分别为1.09~4.92%,2.85~17.78%,0.76~3.78%。三个示范区的经济效益增速较快,其中施秉的经济效益增幅最大(17.78%)。与2018年相比,2019效益综合评价有不同程度的上升,综合评价值为:施秉喀斯特示范区(0.471 2)>关岭-贞丰花江示范区(0.405 2)>毕节撒拉溪示范区(0.336 9)。本研究可为石漠化地区混农林发展保墒与农艺截留技术,实现生态、经济和社会的全面发展提供可行性技术参考依据。(5)提出适合于喀斯特石漠化地区混农林土壤保墒与农艺截留的关键技术,并对取得的成果进行应用验证。根据三个示范区混农林土壤保墒与农艺截留的现有技术和成熟技术,提出适用于喀斯特石漠化地区混农林的三元土壤保墒技术和数据采集与实验装置共性关键创新技术。通过技术示范,共建成山地混农林土壤保墒与农艺截留示范面积约61.98 hm2,在生态、农户认知和认可度方面起到了积极的促进作用。示范点混农林保墒后与对照组相比,土壤容重均下降,降幅为0.2~0.8 g.cm-3,田间持水量、毛管持水量、土壤总孔隙度和毛管孔隙度均上升,上升幅度分别为:4.08~13.48%、3.03~8.47%、0.98~9.37%、1.39~7.89%,改善了土壤物理结构,撒拉溪示范点建设成效最好。且不同农艺截留措施对产流产沙也有明显的阻挡作用,水土流失得到有效阻控。

吴清林[6](2020)在《石漠化环境“五水”赋存转化与混农林业高效利用模式》文中认为中国南方喀斯特地区降雨丰富,特殊的喀斯特地质地貌导致干旱发生率较高。同时,水土流失具有特殊性,兼具地表流失和地下漏失的双重性,在成土速率很低的背景下,水土流失显得异常严重,地表无植被或无土覆盖而呈现出石漠化景观。石漠化治理关键问题在于治理水土流失,而水力作用是水土流失最重要的影响因子。喀斯特地区混农林业是节水增值产业,符合发展生态衍生产业治理石漠化的需求,其中“五水”赋存转化机理及其高效利用研究,可以揭示混农林因地因时合理配置的规律,为水资源高效利用模式提供理论依据。我们根据混农林配置节水、节水耕作及水资源高效利用等多学科交叉理论,2016-2020年在代表南方喀斯特不同地貌结构与石漠化环境的毕节撒拉溪、关岭-贞丰花江和施秉喀斯特研究区,通过15个径流小区35场侵蚀性降雨监测,对26个农艺节水样地和18个工程节水样地共采集了1810个土样并进行实验室物理属性分析,以及1080次土壤蒸发监测、21种植物的浸水试验、21种作物共592次的蒸腾速率监测,结合气象站数据,利用统计分析和数学模型构建,对混农林地的降雨、地表水、土壤水、地下水和生物水的赋存转化机理和机制进行研究,构建模式、技术研发和应用示范及验证推广,为国家石漠化治理水资源高效利用和生态产业发展提供科技支撑。(1)探讨了不同等级石漠化“五水”赋存转化规律,阐明了混农林对水资源高效利用特征,揭示了不同石漠化环境混农林对水资源赋存效益的差异及气温、生物量、土壤水力特征参数等对“五水”赋存转化的影响。不同石漠化程度下可利用降水量与降雨量、陆面蒸发量与土壤蒸发量在研究区的分布呈耦合关系,可利用降水量在中-强度石漠化环境分布最低,土壤蒸发和陆面蒸发则是中强度石漠化最高。混农林在不同程度上都具有减少地表产流、降低蒸腾速率和抑制土壤蒸发的生态效益,混农林对地表产流的阻控、抑制土壤水分蒸发和增加地下水赋存、降低蒸腾速率等方面均表现为潜在-轻度石漠化环境的生态效益最好。水资源赋存效益最终是潜在-轻度石漠化>无-潜在石漠化>中强度石漠化。在“五水”转化中,地表水、地下水、生物水和土壤水相对于降水的贡献率分别为0.14-12.71%、9.43-30.20%、9.79-49.97%和40.72-82.58%。对比研究发现,潜在-轻度石漠化环境混农林系统水资源赋存效益最高,提高了水分利用效率。干旱胁迫有助于提高水分利用效率,中-强度石漠化环境受干旱胁迫的影响使得水分利用效率最高。干旱胁迫、气温、土壤水力特征、生物量等自然因子综合影响着“五水”资源的赋存转化,呈现出一定的规律性和差异性。对规律性和差异性的掌握有利于进一步揭示混农林节水保水机制,为发展节水增值生态衍生产业提供理论支撑。(2)探讨了农艺节水和工程节水策略下混农林业水资源赋存转化与水资源高效利用规律,揭示了不同措施下土壤水赋存转化特征、植物水抑蒸特征,得出了不同节水措施的抑蒸减蒸机制。秸秆覆盖增加了土壤表层肥力,以肥调水的机制增加了表层土壤含水量,中间层土壤含水量较低,说明作物根系主要分布在10-20cm土层。混农林地秸秆覆盖+保水剂、秸秆覆盖、保水剂、地膜覆盖措施与对照组相比,降低了土壤水分蒸发,增加了土壤水分含量,提高了水分利用效率和水资源赋存效益。单一措施与复合措施相比,复合措施更能提高水资源赋存效益和水分利用效率。在干旱胁迫条件下,节水措施布设下的中-强度石漠化地区水分利用效率仍然最高。农艺措施和工程措施的布设,在不同程度上抑制了土壤蒸发、增加了土壤含水量,降低了土壤水向大气水的转化速率,降低了混农林的蒸腾速率,提高了水分利用效率和水资源赋存效益。混农林系统通过节水保水措施后,减少了水资源的耗散,揭示了基于“五水”赋存转化的混农林抑蒸减蒸及水资源高效利用机制,证实了喀斯特地区混农林系统采用节水保水措施进行水资源高效利用的可行性。(3)根据“五水”赋存转化机理,结合混农林节水保水机制,构建了不同石漠化环境混农林水资源高效利用的毕节模式、花江模式和施秉模式,研发了共性关键技术,集成无-潜在、潜在-轻度、中度-强度石漠化环境水资源高效利用技术体系。根据混农林节水与水资源高效利用策略,在毕节撒拉溪构建了喀斯特高原山地潜在-轻度石漠化环境水资源高效赋存与混农林节水增值模式,关岭-贞丰花江构建了喀斯特高原峡谷中-强度石漠化环境地表地下水有效转化与混农林节水保值模式,施秉构建了喀斯特山地峡谷无-潜在石漠化环境土壤-生物水高效赋存与混农林节水增值模式,分别简称“毕节模式”、“花江模式”和“施秉模式”。在模式中对现有技术进行总结,研发了混农林配置、地膜覆盖、屋顶集雨、地表-地下水联合调度、坡面集雨、生态水池、节水灌溉、矮化密植、林下养殖、生草覆盖等共性关键技术及技术体系,针对无-潜在、潜在-轻度、中度-强度石漠化环境,提出了水肥耦合、生草清耕覆盖保墒、瓶式根灌、硬化路面集雨、屋面集雨、地表地下水联合调度等技术集成。(4)混农林节水与水资源高效利用模式具较好的科学性和可操作性,应用示范成效较好,可起到示范引领作用,其中毕节模式、关岭-贞丰模式和施秉模式最适宜推广面积分别占南方8省区总面积的37.12%、20.52%和38.38%。2016年以来在对毕节撒拉溪、花江和施秉混农林与水资源利用现状的走访调查和实际调研基础上,结合前期项目的示范和研究成果,选取了三个研究区共6139hm2进行混农林节水与水资源高效利用示范,带动当地居民发展生态产业,具有良好的生态效益、经济效益和社会效益。发展节水增值混农林业有利于修复已退化的石漠化环境、遏制水土流失、促进植被恢复并带动经济发展。结合GIS空间分析并对指标进行赋值,建立了降雨、气温、海拔、地貌类型、岩性、坡度、土层厚度、水土流失强度、土壤类型、人口密度、人均GDP等评价指标体系,对模式进行推广适宜性评价。结果显示毕节模式、花江模式和施秉模式在中国南方喀斯特8省(市、区)最适宜、较适宜、基本适宜、勉强适宜和不适宜的推广面积分别为74.33×104km2、225.03×104km2、37.68×104km2、52.05×104km2、4.60×104km2,39.74×104km2、14.52×104km2、21.90×104km2、20.83×104km2、96.70×104km2,74.33×104km2、25.03×104km2、37.68×104km2、52.05×104km2、4.60×104km2。

贾天宇[7](2020)在《玉米秸秆覆盖还田对土壤水热条件和杂草发生的影响》文中提出东北三省是我国重要的粮食生产基地,2018年粮食作物的种植面积达到了2329.82万hm2,其中玉米的种植面积达到1326.13万hm2,占总种植面积的56.92%,玉米秸秆资源丰富,由于秸秆还田面积小,导致大量露天焚烧而污染空气环境。《东北黑土地保护性耕作行动计划(2020-2025年)》明确提出要加强推广以农作物秸秆覆盖还田、免(少)耕播种为主要内容的现代耕作技术。因此,系统研究玉米秸秆覆盖还田对土壤水热条件和杂草发生的影响,为促进东北黑土地保护性耕作行动计划的顺利实施,具有重要的理论与现实意义。2017-2019年于东北农业大学向阳试验基地,以连作玉米为对象,设置了传统耕作秸秆不还田(TT)、免耕秸秆覆盖还田(NT)、秸秆覆盖还田免耕播种+中耕(NTS)、垄台深松灭茬+中耕(SCS)、秸秆翻埋还田+中耕(DS)等田间试验;2018-2019年还设置了秸秆覆盖还田量分别为0 kg·hm-2(SC0)、5272.8 kg·hm-2(SC0.5)、10545.6 kg·hm-2(SC1.0)、15818.4kg·hm-2(SC1.5)、21091.2 kg·hm-2(SC2.0)五个秸秆覆盖水平模拟试验,在不施除草剂(NH)、施用茎叶除草剂(FH)和施用封闭除草剂+茎叶除草剂(SFH)三种条件下,研究了玉米秸秆覆盖还田对土壤水热条件和杂草发生的影响,结果表明:玉米秸秆覆盖还田可以明显增加土壤含水量,提升保墒能力。春旱年份各处理土壤含水量由高到低依次是免耕秸秆覆盖还田(NT)、秸秆覆盖还田免耕播种+中耕(NTS)、垄台深松灭茬+中耕(SCS)、传统耕作秸秆不还田(TT)、秸秆翻埋还田+中耕(DS),前三种处理间差异不显着,但都显着高于后两种处理。夏季降雨较少伏旱阶段,各处理土壤含水量与春旱年份规律基本一致。玉米秸秆覆盖还田使播种到拔节期土壤积温减少。播种后30 d玉米出苗期,传统耕作秸秆不还田(TT)处理较垄台深松灭茬+中耕(SCS)、秸秆覆盖还田免耕播种+中耕(NTS)、免耕秸秆覆盖还田(NT)分别高19.6℃·d、26.4℃·d、35.5℃·d。播种后60 d玉米拔节期,仍然保持这个趋势,温差变化不大。不同秸秆还田方式对土壤积温的影响,主要表现在播种后30 d玉米苗期。在不使用除草剂(NH)的条件下,随秸秆覆盖量的增加对杂草的发生影响明显。秸秆覆盖量15818.4 kg·hm-2(SC1.5)和21091.2 kg·hm-2(SC2.0)与秸秆不还田(SC0)相比,杂草萌发量减少7.75%~50.75%,杂草密度减少11.86%~43.68%,鲜重减少6.43%~59.31%,干重减少4.67%~59.31%,对杂草生物量有明显的抑制作用。在施用茎叶除草剂(FH)的条件下,随秸秆覆盖量的增加对杂草的发生影响也较为明显。秸秆覆盖量10545.6 kg·hm-2(SC1.0)、15818.4 kg·hm-2(SC1.5)和21091.2 kg·hm-2(SC2.0)与秸秆不还田(SC0)相比,杂草萌发数量减少11.91%~39.16%,杂草密度减少10.96%~34.50%,杂草鲜重和干重也明显减少。在施用封闭加茎叶除草剂(SFH)的条件下,五种秸秆覆盖量下杂草发生情况无明显差异。在秸秆覆盖还田条件下,施用封闭加茎叶除草剂(SFH)对杂草综合防治效果,优于施用茎叶除草剂(FH)。五个秸秆覆盖量水平下,施用茎叶除草剂(FH)对杂草的株抑制率在69.14%以上,施用封闭加茎叶除草剂(SFH)对杂草的株抑制率在80.22%以上。两种除草剂使用水平对杂草的鲜重和干重都有明显的抑制作用。两种除草剂使用水平(FH、SFH)下,在喷洒茎叶除草剂30 d后撤除秸秆,秸秆覆盖量越大的处理,杂草萌发数量越大,表明秸秆覆盖对除草剂起到阻拦作用,影响除草剂对秸秆下杂草的杀伤作用,秸秆覆盖量越大作用越明显。试验的3年内不同秸秆还田处理下玉米产量差异未达到显着水平。2017和2018年秸秆翻埋还田+中耕(DS)、传统耕作秸秆不还田(TT)和垄台深松灭茬+中耕处理(SCS),玉米产量均高于免耕秸秆覆盖还田(NT)处理;2019年免耕秸秆覆盖还田(NT)处理、秸秆翻埋还田+中耕(DS)和传统耕作秸秆不还田(TT),玉米产量基本趋于一致。

赵正涛[8](2020)在《气吹式防堵大豆免耕播种机设计与试验》文中进行了进一步梳理近年来,随着保护性耕作技术得到大规模的发展与应用,使得免耕播种机具有了快速的发展。市场上的大豆免耕播种机在播种时开沟部件容易被抬高,出现挂草、根茬雍堵问题,以及种子易播于秸秆残茬上造成架种、晾籽现象,严重影响了播种质量和作业效率。针对这一状况,本文基于国内外免耕播种机具研究的基础上,并结合当地播种农艺要求,设计出一种气吹式防堵大豆免耕播种机,本机具采用鼓风风扇与浅旋刀配合方式,利用鼓风气流将秸秆吹散到背垄上,达到免耕环境下“洁区”播种的目的。主要研究内容和取得的成果如下:(1)气吹式防堵大豆免耕播种机总体方案设计。通过大量查阅国内外免耕播种机相关文献资料,比较和分析现有免耕播种机具防堵装置的工作机理和设计特点,确定了合理的防堵方式,利用UG NX10.0软件绘制了整机的三维模型。(2)防堵装置和清茬装置的设计。确定了鼓风风扇叶尖安装角度为13.6°,叶根安装角度为32.0°,风扇轴转速为1800~2500 r/min;经过计算和理论分析,确定了浅旋刀转速为300 r/min,刀片的回转半径为250 mm,入土深度在20 mm‐50 mm;相邻刀座间径向呈90°等分,轴向间距为225 mm,刀片端点速度在4.5~6.2 m/s。(3)施肥装置和播种装置的设计。整机实现侧施肥6行播种大豆,行间距为40 cm;施肥开沟器采用锄铲式开沟器,其入土角度为34°,入土性能好,对土壤扰动量小;通过对比分析,选择使用外槽轮式排肥器和指夹式排种器,并结合大豆播种农艺要求确定了镇压轮直径为350 mm。(4)对关键部件进行有限元分析。利用ANSYS/Workbench软件对浅旋刀和机架进行静力学分析,对其施加相应的载荷和约束,得出最大应力、应变值,根据选用材料特性,验证了浅旋刀、机架设计的合理性,能够满足免耕播种机实际工作的需求。(5)样机试制和田间试验。确定了整机结构与技术参数,并完成样机的加工试制;田间试验结果表明:在机具作业速度为4 km/h,理论粒距12 cm条件下,秸秆清除率为83.19%,粒距合格指数为91.47%,重播指数为2.90%,漏播指数为4.69%,变异系数为9.48%,播种深度合格率为86.67%,晾籽率为1.32%。机具通过性良好,各项指标均符合设计要求。

严佳瑜[9](2020)在《上海浦东稻田杂草土壤种子库组成、动态及其性状解释》文中认为水稻是上海地区主要的粮食作物之一,长期施用大量的化肥和农药已造成耕地地力下降、农业面源污染扩大、杂草抗药性增强等农田生态环境问题。尽管杂草是影响水稻丰产增收、保持品质的重要因素,但它作为农田生态系统的重要组成部分,在活化土壤养分、维持农田生态系统功能等方面有特殊的生态价值。杂草土壤种子库作为潜在的杂草发生库,是维持杂草群落物种多样性的关键;研究其组成及动态变化规律是合理制定草害防治措施和多样性保育措施的基础。目前上海稻区积极推动“三三制”计划,减少稻-麦轮作面积,推广夏熟茬口绿肥种植、休耕田深翻。基于此,本研究以上海浦东稻田为对象,针对绿肥-水稻、休耕-水稻和小麦-水稻3种轮作模式及浅耕和深耕2种耕作深度,连续两年分两季开展土壤种子库镜检和萌发实验,分析不同农艺措施下杂草土壤种子库的组成及动态差异,并结合植物性状(最大高度、比叶面积和种子重量)对其进行解释。研究结果有助于筛选有针对性的农艺措施,为“三三制”下的杂草管理提供科学依据。主要研究结果如下:(1)镜检共检出杂草种子14科32种,萌发实验共萌生杂草幼苗12科31种,以禾本科(11种)和莎草科(6种)为主,与地上群落的Sorensen相似性系数分别为0.64和0.69;杂草土壤种子库以冬季一年生杂草(84%)、阔叶草(58%)为主要杂草类型,优势种为碎米荠(30%)、硬草(21%)、荠(11%)和蚊母草(10%),合计占种子库总数的72%。物种组成的聚类结果把绿肥+浅耕和休耕+浅耕处理归为同一类群;在NMDS分析中,两者距离较近,相似性程度高。(2)土壤种子库密度在各实验阶段和不同农艺措施间差异显着。实验第二年(2018年)镜检密度显着低于第一年(2017年);而萌发密度则存在季节差异,秋季高于春季。相较于原小麦+浅耕模式,夏熟茬口种植绿肥或休耕使得实验第一年土壤种子库镜检密度大幅增加,但采用深耕的田块其增幅(1.9倍)远比浅耕的田块小(3.7倍),实验第二年浅耕田块的镜检密度仍高于深耕,但差异不大(2.0倍、1.7倍);萌发密度在不同农艺措施间无显着差异。(3)土壤种子库物种丰富度随实验进展,其镜检结果总体呈现下降趋势,由13种降至10种;而萌发物种丰富度先增后减,其中2017年秋季最高,为7种。土壤种子库物种丰富度在不同农艺措施间无显着差异,相对而言,绿肥-水稻和休耕-水稻模式在深耕下的萌发物种丰富度高于浅耕。(4)农艺措施可以较好的解释杂草土壤种子库的物种组成,其对各实验阶段镜检和萌发结果的解释率均在50%以上;若夏熟茬口由小麦转为绿肥或休耕,日本看麦娘、看麦娘的数量增多,而蚊母草的数量减少。轮作模式和植物性状的交互作用对种子库物种组成无强烈影响;而耕作深度和种子重量的交互作用对种子库物种组成有强烈影响;与深耕相比,浅耕下种子重量大的杂草数量更多。综上,上海实施“三三制”时,建议对绿肥-水稻和休耕-水稻模式采取深耕处理,降低杂草土壤种子库密度的同时不会影响其物种多样性,有利于维持稻田杂草群落的生态平衡。

孙金秋,任相亮,胡红岩,姜伟丽,马亚杰,王丹,宋贤鹏,马艳,马小艳[10](2019)在《农田杂草群落演替的影响因素综述》文中研究说明杂草是影响农业生产的重要生物逆境之一,农田杂草群落演替受到多种环境因素和人为因素的影响。本文概述了二氧化碳浓度升高、全球变暖、降水量变化等气候因素,保护性耕作、轮作、地膜覆盖、间作等耕作模式和种植制度,以及施肥、灌溉和化学除草剂的使用等农事操作,对农田杂草群落演替的影响,并对控制杂草群落演替,加强杂草防除进行了展望,提出了加强杂草危害监测预警、注重杂草防控技术研究、加强杂草抗药性监测和治理的建议。

二、保护性耕作条件下小麦、玉米、大豆田间杂草防治存在的问题及对策研究(论文开题报告)

(1)论文研究背景及目的

此处内容要求:

首先简单简介论文所研究问题的基本概念和背景,再而简单明了地指出论文所要研究解决的具体问题,并提出你的论文准备的观点或解决方法。

写法范例:

本文主要提出一款精简64位RISC处理器存储管理单元结构并详细分析其设计过程。在该MMU结构中,TLB采用叁个分离的TLB,TLB采用基于内容查找的相联存储器并行查找,支持粗粒度为64KB和细粒度为4KB两种页面大小,采用多级分层页表结构映射地址空间,并详细论述了四级页表转换过程,TLB结构组织等。该MMU结构将作为该处理器存储系统实现的一个重要组成部分。

(2)本文研究方法

调查法:该方法是有目的、有系统的搜集有关研究对象的具体信息。

观察法:用自己的感官和辅助工具直接观察研究对象从而得到有关信息。

实验法:通过主支变革、控制研究对象来发现与确认事物间的因果关系。

文献研究法:通过调查文献来获得资料,从而全面的、正确的了解掌握研究方法。

实证研究法:依据现有的科学理论和实践的需要提出设计。

定性分析法:对研究对象进行“质”的方面的研究,这个方法需要计算的数据较少。

定量分析法:通过具体的数字,使人们对研究对象的认识进一步精确化。

跨学科研究法:运用多学科的理论、方法和成果从整体上对某一课题进行研究。

功能分析法:这是社会科学用来分析社会现象的一种方法,从某一功能出发研究多个方面的影响。

模拟法:通过创设一个与原型相似的模型来间接研究原型某种特性的一种形容方法。

三、保护性耕作条件下小麦、玉米、大豆田间杂草防治存在的问题及对策研究(论文提纲范文)

(1)农艺措施对冀西北坝上燕麦田杂草组成及饲草产量的影响(论文提纲范文)

摘要
Abstract
1 引言
    1.1 研究背景
        1.1.1 饲用燕麦发展前景
        1.1.1.1 河北省燕麦饲草进出口情况
        1.1.1.2 河北省燕麦饲草生产情况
        1.1.2 冀西北寒旱区燕麦种植优势
        1.1.2.1 冀西北寒旱区自然与社会环境
        1.1.2.2 坝上地区燕麦草种植优势
    1.2 研究进展
        1.2.1 耕作方式对杂草群落结构的影响
        1.2.2 播期对杂草群落结构的影响
        1.2.3 播期对农作物生产的影响
    1.3 主要研究内容,需要突破的关键问题及技术路线
        1.3.1 主要研究内容
        1.3.2 需要突破的关键问题
        1.3.3 试验技术路线
2 试验材料与方法
    2.1 试验区概况
    2.2 试验设计
    2.3 测定内容及方法
    2.4 数据统计
3 结果与分析
    3.1 耕作方式对燕麦饲草产量及田间杂草组成的影响
        3.1.1 不同耕作措施燕麦田各生育时期杂草密度
        3.1.2 不同耕作措施燕麦田抽穗期杂草优势种
        3.1.3 不同耕作措施燕麦田的杂草群落多样性指数
        3.1.4 不同耕作措施对杂草株高的影响
        3.1.5 不同耕作措施对燕麦田杂草生物量及燕麦产量的影响
        3.1.5.1 耕作措施对燕麦田杂草生物量的影响
        3.1.5.2 耕作措施对燕麦饲草产量的影响
    3.2 播期对燕麦田杂草组成和群落结构的影响
        3.2.1 播期对燕麦田杂草群落密度的影响
        3.2.2 播期对燕麦田杂草优势种群的影响
        3.2.3 播期对燕麦田植物多样性的影响
        3.2.4 播期对杂草生物量和燕麦饲草产量的影响
        3.2.4.1 播期对杂草生物量的影响
        3.2.4.2 播期对燕麦饲草产量的影响
    3.3 农艺措施对燕麦草产量和品质的影响
        3.3.1 不同生育时期燕麦饲草品质变化
        3.3.2 不同刈割期燕麦干草产量和质量分级
4 讨论
    4.1 燕麦饲草产量与田间杂草组成
    4.2 耕作、播期措施对燕麦草产量的影响
    4.3 刈割期与燕麦干草品质
5 结论
参考文献
在读期间发表的学术论文
作者简历
致谢

(2)垄作原位免耕播种机侧向多级残茬处理关键技术及装备研究(论文提纲范文)

摘要
Abstract
1 引言
    1.1 研究的目的与意义
    1.2 残茬处理技术研究现状
        1.2.1 国内研究现状
        1.2.2 国外研究现状
    1.3 研究的主要内容与方法
    1.4 技术路线
2 侧向多级残茬处理技术方案设计
    2.1 设计原则
        2.1.1 种床构建
        2.1.2 宽幅高速作业
    2.2 残茬处理装置结构及工作原理
    2.3 关键参数确定
    2.4 本章小结
3 定轴式种床构建装置研究
    3.1 总体设计
        3.1.1 结构组成
        3.1.2 工作原理
    3.2 侧向清秸刀设计与试验研究
        3.2.1 侧向清秸工作分析与滑切曲线设计
        3.2.2 清秸性能影响规律分析与参数优化试验
    3.3 侧向清茬刀设计与试验研究
        3.3.1 侧向清茬刀工作分析
        3.3.2 侧向清茬刀正切刃设计
        3.3.3 清茬性能影响规律分析与参数优化试验
        3.3.4 模糊综合评价分析
    3.4 基于离散元法结构参数组合优化仿真试验
        3.4.1 秸秆覆盖土壤离散元模型建立
        3.4.2 仿真试验方案
        3.4.3 性能指标测定方法
        3.4.4 仿真试验结果与分析
        3.4.5 参数组合优化与验证试验
    3.5 本章小结
4 残茬单级运移机理分析及整流装置研究
    4.1 整流装置的设计
        4.1.1 结构及工作原理
        4.1.2 残茬单级运移机理分析与结构参数设计
    4.2 离散元仿真试验研究
        4.2.1 系统模型构建
        4.2.2 接触模型与本征参数
        4.2.3 仿真试验方案
        4.2.4 性能评价指标测定方法
    4.3 仿真试验结果与分析
        4.3.1 各因素对性能评价指标影响规律分析
        4.3.2 参数组合优化
    4.4 田间试验
        4.4.1 验证试验
        4.4.2 对比试验
    4.5 本章小结
5 基于侧向清秸原理的残茬破碎抛撒装置研究
    5.1 设计原则
    5.2 结构及工作原理
        5.2.1 结构组成
        5.2.2 工作原理
    5.3 关键部件设计
        5.3.1 破碎抛撒刀轴设计
        5.3.2 抛撒调控蜗壳设计
    5.4 残茬破碎抛撒装置工作过程分析
        5.4.1 残茬捡拾过程分析
        5.4.2 残茬破碎过程分析
        5.4.3 残茬抛撒过程分析
    5.5 基于EDEM残茬颗破碎特性分析
        5.5.1 系统模型构建
        5.5.2 接触模型与本征参数
        5.5.3 仿真试验方案
        5.5.4 仿真试验结果与分析
        5.5.5 参数组合优化
    5.6 基于CFD-DEM残茬颗粒群运动特性分析
        5.6.1 系统模型构建
        5.6.2 耦合仿真参数
        5.6.3 仿真试验方案
        5.6.4 仿真试验结果与分析
        5.6.5 参数组合优化
    5.7 田间试验
    5.8 本章小结
6 残茬覆盖技术对土壤结构和作物产量影响
    6.1 材料与方法
        6.1.1 试验条件
        6.1.2 试验材料
        6.1.3 试验方案
    6.2 评价指标测定
        6.2.1 土壤容重
        6.2.2 土壤孔隙度
        6.2.3 土壤有机质含量
        6.2.4 作物产量
    6.3 结果与分析
        6.3.1 各处理对土壤容重的影响分析
        6.3.2 各处理对土壤孔隙度的影响分析
        6.3.3 各处理对土壤有机质含量的影响分析
        6.3.4 各处理对作物产量的影响分析
    6.4 本章小结
7 结论与展望
    7.1 结论
    7.2 创新点
    7.3 展望
致谢
参考文献
攻读博士学位期间发表的学术论文

(3)秸秆还田和施肥对麦豆轮作土壤碳氮及微生物群落的影响(论文提纲范文)

摘要
ABSTRACT
第一章 前言
    1.1 研究背景
    1.2 研究目的意义
    1.3 国内外研究进展
        1.3.1 麦豆轮作种植模式下的秸秆还田和施肥研究
        1.3.2 土壤氮组分含量及影响因素研究
        1.3.3 土壤碳组分含量及影响因素研究
        1.3.4 土壤微生物群落多样性及影响因素研究
        1.3.5 土壤微生物群落多样性与碳氮组分的相互影响关系
        1.3.6 本研究的主要科学问题和研究目标
    1.4 研究内容
        1.4.1 秸秆还田和施肥对土壤氮组分的影响
        1.4.2 秸秆还田和施肥对土壤碳组分的影响
        1.4.3 秸秆还田和施肥对土壤pH值、水分及作物产量的影响
        1.4.4 秸秆还田和施肥对土壤微生物多样性的影响
        1.4.5 土壤碳氮形态及变化对土壤微生物多样性的影响
    1.5 技术路线
第二章 研究方法及试验设计
    2.1 试验地概况
    2.2 试验设计
    2.3 试验材料
    2.4 测试方法
        2.4.1 土壤全氮的测定
        2.4.2 土壤硝态氮、铵态氮的测定
        2.4.3 土壤有机碳、溶解性总碳、溶解性有机碳、无机碳的测定
        2.4.4 土壤微生物生物量碳、氮,可溶性氮的测定
        2.4.5 麦豆小区产量及氮肥利用效率的测定
        2.4.6 土壤总DNA提取及高通量测序
        2.4.7 土壤水分的测定
    2.5 数据统计及分析方法
第三章 秸秆还田和施肥对麦豆轮作土壤氮素动态影响
    3.1 麦豆轮作种植模式下的土壤全氮含量动态变化
        3.1.1 土壤全氮含量
        3.1.2 土壤无机氮含量
        3.1.3 土壤有机氮占比
    3.2 麦豆轮作轮作模式下的土壤铵态氮含量动态变化
        3.2.1 土壤铵态氮含量
        3.2.2 土壤中铵态氮的层化比
        3.2.3 土壤中铵态氮所占全氮比例
    3.3 麦豆轮作种植模式下的土壤硝态氮含量动态变化
        3.3.1 土壤中硝态氮含量
        3.3.2 土壤中硝态氮层化比
        3.3.3 硝态氮所占全氮比例
    3.4 麦豆轮作种植模式下的土壤微生物氮含量动态变化
        3.4.1 土壤中微生物氮含量动态变化
        3.4.2 土壤微生物量氮层化比
        3.4.3 微生物氮占全氮含量比例
    3.5 小结
第四章 秸秆还田和施肥对麦豆轮作土壤碳素动态变化的影响
    4.1 麦豆轮作种植模式下的土壤有机碳含量动态变化
    4.2 麦豆轮作种植模式下的土壤溶解性总碳动态变化
        4.2.1 土壤溶解性总碳含量动态变化
        4.2.2 溶解性总碳占土壤有机碳比例
    4.3 麦豆轮作种植模式下的土壤溶解性有机碳含量动态变化
        4.3.1 溶解性有机碳含量动态变化
        4.3.2 溶解性有机碳占溶解性总碳的比例
        4.3.3 溶解性有机碳占土壤有机碳比例
    4.4 麦豆轮作种植模式下的土壤溶解性无机碳含量动态变化
        4.4.1 土壤无机碳动态变化
        4.4.2 土壤无机碳占溶解性总碳比例
        4.4.3 土壤无机碳占土壤有机碳的比例
        4.4.4 土壤无机碳与溶解性有机碳的比例
    4.5 麦豆轮作种植模式下的土壤微生物量碳含量动态变化
        4.5.1 土壤微生物量碳含量动态变化
        4.5.2 土壤微生物量碳占土壤有机碳的比例
    4.6 不同处理下土壤和微生物碳氮化学计量比
        4.6.1 土壤碳氮比
        4.6.2 土壤微生物碳氮比
    4.7 小结
第五章 秸秆还田和施肥对长期麦豆轮作土壤水分、pH值及产量的影响
    5.1 麦豆轮作模式下的土壤水分动态变化
    5.2 麦豆轮作模式下的土壤pH值动态变化
    5.3 秸秆还田和施肥对作物产量的影响
    5.4 作物产量与土壤碳氮元素的相关性分析
    5.5 小结
第六章 秸秆还田和施肥对麦豆轮作土壤微生物群落结构的影响
    6.1 麦豆轮作种植模式下的土壤细菌群落结构特征
        6.1.1 各处理对土壤细菌群落多样性指数的影响
        6.1.2 对各分类水平上细菌菌群数的影响
        6.1.3 对细菌群落门水平上多样性的影响
    6.2 麦豆轮作种植模式下的土壤真菌群落结构特征
        6.2.1 各处理对土壤真菌群落多样性指数的影响
        6.2.2 对各分类水平上真菌菌群数的影响
        6.2.3 对土壤真菌群落门水平上多样性的影响
    6.3 土壤细菌、真菌多样性与门水平菌群结构相关性分析
        6.3.1 土壤细菌多样性与门水平菌群群落的相关性
        6.3.2 土壤真菌多样性与门水平菌群群落的相关性
        6.3.3 土壤细菌、真菌门水平菌上群群落的相关性
    6.4 小结
第七章 土壤微生物与土壤碳氮组分关系
    7.1 土壤氮素形态及含量对麦豆轮作土壤微生物多样性的影响
    7.2 土壤碳素形态及含量对麦豆轮作土壤微生物多样性的影响
    7.3 土壤碳氮元素化学计量比对麦豆轮作土壤微生物多样性的影响
    7.4 麦豆轮作土壤微生物多样性与土壤碳氮养分环境的关系
    7.5 土壤细菌、真菌与土壤碳氮养分的相关性分析
        7.5.1 土壤细菌菌群结构与土壤碳氮养分的相关性分析
        7.5.2 土壤真菌菌群结构与土壤碳氮养分的相关性分析
    7.6 小结
第八章 讨论、结论与创新点
    8.1 讨论
        8.1.1 秸秆还田和施肥措施对土壤各形态氮含量及影响因素分析
        8.1.2 秸秆还田和施肥措施对土壤各形态碳素含量及影响因素分析
        8.1.3 秸秆还田和施肥对麦豆轮作土壤微生物群落多样性的影响
        8.1.4 土壤碳氮组分对细菌、真菌门分类水平菌群结构的影响
    8.2 结论
        8.2.1 秸秆还田和施肥措施提升了麦豆轮作下土壤氮素含量
        8.2.2 秸秆还田和施肥措施提升了麦豆轮作下土壤碳素含量
        8.2.3 秸秆还田和施肥措施影响了土壤微生物菌群结构
        8.2.4 土壤微生物多样性对土壤氮素、碳素变化趋势的响应
    8.3 创新性
    8.4 本研究不足及下一步展望
        8.4.1 研究不足
        8.4.2 展望
参考文献
致谢
个人简历

(4)旱灾对我国粮食主产省粮食产量的影响及抗旱对策研究(论文提纲范文)

摘要
abstract
第一章 绪论
    1.1 研究背景及意义
    1.2 我国主要的自然灾害
    1.3 旱灾的发生及抗旱对策
        1.3.1 旱灾的定义及评价指标
        1.3.2 我国农业旱灾发生的原因
        1.3.3 防旱抗旱措施及对策
    1.4 气候变化背景下国内外旱灾的发生情况
        1.4.1 国外旱灾发生
        1.4.2 我国旱灾发生特点
第二章 研究内容和研究方法
    2.1 研究的目标与内容
        2.1.1 研究目标
        2.1.2 研究内容
        2.1.3 技术路线
    2.2 数据来源
    2.3 指标测定
    2.4 计算方法
第三章 我国粮食主产省旱灾发生规律及对粮食产量的影响
    3.1 引言
    3.2 东北地区粮食主产省旱灾发生规律及粮食产量的变化
        3.2.1 黑龙江
        3.2.2 吉林
        3.2.3 辽宁
        3.2.4 内蒙古
    3.3 黄淮海地区粮食主产省旱灾发生规律及粮食产量的变化
        3.3.1 河北
        3.3.2 河南
        3.3.3 山东
    3.4 长江中下游地区粮食主产省旱灾发生规律及粮食产量的变化
        3.4.1 安徽
        3.4.2 湖北
        3.4.3 湖南
        3.4.4 江苏
        3.4.5 江西
    3.5 西南地区粮食主产省旱灾发生规律及粮食产量的变化
        3.5.1 四川
    3.6 讨论
        3.6.1 粮食主产省旱灾发生的时空变化
        3.6.2 粮食主产省粮食单产和总产的变化趋势
        3.6.3 旱灾对粮食产量的影响
    3.7 小结
第四章 不同区域抗旱减灾技术研究
    4.1 引言
    4.2 材料与方法
    4.3 东北地区主要作物抗旱减灾技术研究
        4.3.1 玉米抗旱技术研究
        4.3.2 大豆抗旱技术研究
    4.4 黄淮海地区主要作物抗旱减灾技术研究
        4.4.1 夏玉米抗旱技术研究
        4.4.2 冬小麦抗旱技术研究
    4.5 西南地区
        4.5.1 水稻抗旱减灾措施及对策
        4.5.2 玉米抗旱减灾措施及对策
        4.5.3 小麦抗旱减灾措施及对策
    4.6 长江中下游地区
        4.6.1 红黄壤坡耕旱地避旱减灾种植模式与关键技术
        4.6.2 农业化学节水制剂研制与避旱减灾机理及应用技术研究
    4.7 小结
第五章 气候变化背景下我国未来干旱发生的趋势分析
    5.1 引言
    5.2 材料与方法
        5.2.1 数据来源
        5.2.2 干旱指标
    5.3 我国不同区域的干旱演变趋势
        5.3.1 轻旱演变趋势
        5.3.2 中旱演变趋势
        5.3.3 重旱演变趋势
        5.3.4 特旱演变趋势
        5.3.5 干旱演变趋势
    5.4 我国粮食主产区干旱特征演变
        5.4.1 东北地区
        5.4.2 黄淮海地区
        5.4.3 长江中下游地区
        5.4.4 西南地区
    5.5 气候变化对我国粮食产量生产的影响及未来抗旱对策
    5.6 小结
第六章 结论与展望
    6.1 全文结论
    6.2 创新点
    6.3 展望
参考文献
致谢
作者简历

(5)喀斯特石漠化环境混农林土壤保墒与农艺截留及监测评价研究(论文提纲范文)

摘要
ABSTRCT
前言
一 研究现状
    (一) 土壤保墒与农艺截留
    (二) 喀斯特混农林土壤保墒与农艺截留
    (三) 研究进展与展望
二 研究设计
    (一) 研究目标与内容
    (二) 技术路线与方法
    (三) 研究区选择与代表性
    (四) 材料数据获取与可信度分析
三 混农林土壤保墒土壤物理性质及含水率变化规律
    (一) 混农林保墒对土壤物理性质的影响
        1 高原山地潜在-轻度石漠化生态环境
        2 高原峡谷中-强度石漠化生态环境
        3 山地峡谷无-潜在石漠化生态环境
        4 不同环境混农林保墒对土壤物理性质的对比分析
    (二) 混农林保墒对土壤含水率的影响
        1 高原山地潜在-轻度石漠化生态环境
        2 高原峡谷中-强度石漠化生态环境
        3 山地峡谷无-潜在石漠化生态环境
        4 不同环境混农林保墒对土壤含水率的对比分析
四 混农林农艺截留机制
    (一) 不同混农林农艺截留坡面产流产沙对降雨的响应
        1 高原峡谷中-强度石漠化生态环境
        2 山地峡谷无-潜在石漠化生态环境
        3 不同环境混农林农艺截留坡面产流产沙特征对比分析
    (二) 不同混农林农艺截留的减流减沙作用
        1 高原峡谷中-强度石漠化生态环境
        2 山地峡谷无-潜在石漠化生态环境
        3 不同环境混农林农艺截留的减流减沙作用对比分析
五 混农林保墒与农艺截留技术研发及应用示范验证
    (一) 石漠化地区现有技术及成熟技术
        1 有机物覆盖技术
        2 地膜覆盖技术
        3 石块覆盖技术
        4 保水剂
        5 坡耕地等高植物篱
    (二) 石漠化地区共性关键技术研发
        1 高原山地混农林保墒与农艺截留技术
        2 高原峡谷混农林保墒与农艺截留技术
        3 山地峡谷混农林保墒与农艺截留技术
    (三) 混农林保墒及农艺截留技术应用示范验证
        1 示范点的选择与代表性论证
        2 示范点建设目标与建设内容
        3 混农林保墒现状评价与措施布局
        4 措施设计与措施示范过程
        5 混农林保墒及农艺截留技术应用示范成效与验证分析
六 混农林保墒与农艺截留成效监测评价
    (一) 监测评价指标体系
        1 指标体系构建原则
        2 指标选取依据与方法
        3 混农林保墒与农艺截留成效监测评价指标体系确定
        4 指标说明及计算
    (二) 评价体系指标的一致性检验及权重的确定
        1 判断矩阵构建
        2 指标权重的最终确定
        3 指标数据的标准化处理
        4 综合评价模型与结果分析
七 结论与讨论
参考文献
攻读学位期间科研成果
致谢

(6)石漠化环境“五水”赋存转化与混农林业高效利用模式(论文提纲范文)

摘要
Abstract
前言
第一章 研究现状
    第一节 “五水”赋存转化与混农林业
    第二节 喀斯特石漠化环境“五水”赋存转化与混农林业
    第三节 “五水”赋存转化与混农林业研究现状与展望
    第四节 国内外拟解决的关键科技问题与展望
第二章 研究设计
    第一节 研究目标与内容
    第二节 技术路线与研究方法
    第三节 研究区选择与代表性
    第四节 实验方案与资料数据可信度分析
第三章 “五水”赋存转化与混农林业高效利用
    第一节 大气水赋存转化特征
        一 研究区降水时空分布特征
        二 可利用降水分布特征
        三 相关性分析
    第二节 地表水赋存转化与混农林高效利用
        一 侵蚀性降雨量与产流关系
        二 雨强与产流的关系
        三 混农林系统地表产流阻控效益
    第三节 土壤水赋存转化与混农林高效利用
        一 混农林土壤水赋存特征
        二 混农林地土壤水蒸发
    第四节 生物水赋存转化与混农林高效利用
        一 混农林蒸腾特征
        二 混农林地冠层截留量
    第五节 “五水”赋存转化与混农林高效利用
        一 混农林地“五水”赋存转化特征
        二 混农林“五水”赋存转化数学模型构建与验证
        三 基于“五水”赋存转化机理的混农林地水资源高效利用
第四章 混农林地水资源高效利用策略
    第一节 混农林地农艺措施高效利用水资源
        一 混农林地农艺措施下的土壤水分赋存特征
        二 混农林地农艺措施的土壤水资源转化特征
        三 基于“五水”赋存转化的混农林农艺节水策略
    第二节 工程节水措施与混农林高效利用水资源策略
        一 工程节水措施及混农林土壤水分赋存特征
        二 工程节水策略对混农林地水资源转化的影响
        三 基于“五水”赋存转化的工程节水策略
第五章 基于“五水”赋存转化的混农林业高效利用模式构建及技术
    第一节 模式构建
        一 模式构建的理论依据
        二 模式构建的边界条件
        三 模式构成的技术体系
        四 模式的结构与功能特性
        五 结构与功能的对比分析
    第二节 技术研发与集成
        一 现有成熟技术应用
        二 共性关键技术研发
        三 不同等级石漠化地区技术优化与集成
第六章 “五水”赋存转化与混农林业高效利用模式应用及推广
    第一节 模式应用示范与验证
        一 示范点选择与代表性论证
        二 示范点建设目标与建设内容
        三 混农林水资源高效利用现状评价与措施布局
        四 混农林水资源高效利用规划设计与应用示范过程
        五 混农林水资源高效利用模式应用示范成效与验证分析
    第二节 模式优化调整方案与推广
        一 模式存在的问题与优化调整
        二 模式推广适宜性分析
        三 模式推广应用范围分析
第七章 结论与讨论
    第一节 主要结论
    第二节 创新点
    第三节 讨论与展望
参考文献
附录一 土壤物理属性数据(g)
附录二 作物蒸腾速率监测(g/g/h)
附录三 地表产流数据
附录四 土壤蒸发速率监测(mm/d)
附录五 气象数据统计
附录六 植被截留数据(mm)
攻读学位期间科研成果
    一、参与的科研项目
    二、发表的论文
    三、获得奖励
致谢

(7)玉米秸秆覆盖还田对土壤水热条件和杂草发生的影响(论文提纲范文)

摘要
英文摘要
1 前言
    1.1 研究的目的与意义
    1.2 国内外研究动态
        1.2.1 秸秆还田的土壤培肥作用及产量效果
        1.2.2 旱田杂草发生及危害
        1.2.3 杂草的防除技术
        1.2.4 秸秆还田对土壤水热条件的影响
        1.2.5 秸秆还田对杂草发生与防除的影响
2 材料与方法
    2.1 秸秆不同还田方式对土壤水热条件的影响试验
        2.1.1 试验设计
        2.1.2 测定项目及方法
    2.2 玉米秸秆覆盖还田对杂草发生影响的模拟试验
        2.2.1 试验设计
        2.2.2 测定项目及方法
    2.3 技术路线
    2.4 数据统计与分析
3 结果与分析
    3.1 玉米秸秆还田方式对土壤水热条件的影响
        3.1.1 玉米秸秆还田方式对土壤含水量的影响
        3.1.2 玉米秸秆还田方式对保墒效果的影响
        3.1.3 玉米秸秆还田方式对土壤温度的影响
        3.1.4 玉米秸秆还田方式对生育前期土壤积温的影响
    3.2 玉米秸秆覆盖还田对杂草萌发的影响
        3.2.1 玉米秸秆覆盖还田对杂草萌发数量和种类的影响
        3.2.2 玉米秸秆覆盖还田对杂草群落组成的影响
        3.2.3 玉米秸秆覆盖还田与化学除草对杂草萌发的互作影响
    3.3 玉米秸秆覆盖还田对杂草萌发时期与生物量的影响
        3.3.1 玉米秸秆覆盖还田对杂草萌发时期的影响
        3.3.2 玉米秸秆覆盖还田对生物量的影响
    3.4 玉米秸秆覆盖还田对杂草抑制效果及撤除秸秆发生情况
        3.4.1 玉米秸秆覆盖还田对杂草抑制效果
        3.4.2 撤除秸秆杂草萌发情况
    3.5 玉米秸秆还田方式对玉米产量的影响
4 讨论
    4.1 秸秆还田对土壤水热条件的影响
    4.2 秸秆覆盖还田对杂草萌发和生物量的影响
    4.3 秸秆覆盖还田对杂草防治效果的影响
    4.4 秸秆还田对玉米产量的影响
5 结论
致谢
参考文献
攻读硕士学位期间发表的学术论文

(8)气吹式防堵大豆免耕播种机设计与试验(论文提纲范文)

摘要
ABSTRACT
第一章 绪论
    1.1 研究背景及目的
    1.2 国内外免耕播种机研究现状
        1.2.1 国外免耕播种机研究现状
        1.2.2 国内免耕播种研究现状
    1.3 免耕播种机防堵装置的研究
        1.3.1 国外免耕播种机防堵装置的研究现状
        1.3.2 国内免耕播种机防堵装置的研究现状
    1.4 研究的内容、方法和技术路线
        1.4.1 课题来源
        1.4.2 研究内容与方法
        1.4.3 技术路线
    1.5 本章小结
第二章 气吹式防堵大豆免耕播种机总体方案设计
    2.1 设计要求
    2.2 整机结构及工作原理
    2.3 本章小结
第三章 免耕播种机关键部件的研究与设计
    3.1 防堵装置关键部件设计
        3.1.1 防堵机理
        3.1.2 鼓风风扇的结构确定
        3.1.3 鼓风风扇的传动设计
        3.1.4 鼓风风扇轴的参数设计与计算
        3.1.5 鼓风风扇产生风力的分析
    3.2 清茬装置关键部件设计
        3.2.1 浅旋刀参数设计
        3.2.2 刀片运动分析
    3.3 施肥装置设计
        3.3.1 施肥开沟器设计
        3.3.2 排肥器选型与排肥量计算
    3.4 播种装置设计
        3.4.1 排种器选型
        3.4.2 镇压轮的设计
    3.5 整机三维造型
        3.5.1 关键部件建模
        3.5.2 整机虚拟装配
    3.6 本章小结
第四章 免耕播种机关键部件的有限元分析
    4.1 ANSYS软件简介
    4.2 浅旋刀有限元分析
    4.3 机架有限元分析
    4.4 本章小结
第五章 气吹式大豆免耕播种机样机试制与田间试验
    5.1 样机试制及主要技术参数
        5.1.1 样机试制
        5.1.2 主要技术参数
    5.2 田间试验目的及内容
        5.2.1 试验目的
        5.2.2 试验内容与方法
    5.3 试验设计
        5.3.1 试验条件
        5.3.2 试验评价指标
    5.4 试验结果与分析
    5.5 本章小结
第六章 总结与展望
    6.1 总结
    6.2 展望
参考文献
致谢
作者简介

(9)上海浦东稻田杂草土壤种子库组成、动态及其性状解释(论文提纲范文)

摘要
abstract
第一章 绪论
    1.1 研究背景与意义
    1.2 国内外研究进展
        1.2.1 土壤种子库与地上群落
        1.2.2 稻田杂草土壤种子库构成与动态
        1.2.3 农田杂草土壤种子库的影响因素
        1.2.4 群落物种组成的植物性状解释
    1.3 研究内容与技术路线
        1.3.1 研究内容
        1.3.2 技术路线
第二章 研究区域概况与研究方法
    2.1 研究区域概况
    2.2 研究方法
        2.2.1 实验设计
        2.2.2 地上杂草群落调查与样品采集
        2.2.3 杂草土壤种子库的检测
        2.2.4 数据处理
第三章 结果与分析
    3.1 土壤种子库物种组成
    3.2 土壤种子库的动态变化
        3.2.1 个体密度
        3.2.2 物种丰富度
        3.2.3 物种组成
    3.3 不同农艺措施土壤种子库的差异
        3.3.1 个体密度
        3.3.2 物种丰富度
        3.3.3 物种组成
    3.4 植物性状与土壤种子库种类组成的关联
        3.4.1 丰度对农艺措施的响应
        3.4.2 植物性状与农艺措施的交互关系
第四章 讨论与结论
    4.1 讨论
        4.1.1 稻田杂草土壤种子库组成与动态
        4.1.2 不同农艺措施对杂草土壤种子库的影响
        4.1.3 植物性状对不同农艺措施土壤种子库组成的解释
    4.2 结论
    4.3 展望
参考文献
附录
    附表A
    附录B
    附录C
致谢

(10)农田杂草群落演替的影响因素综述(论文提纲范文)

1 气候因素对农田杂草群落演替的影响
    1.1 二氧化碳浓度升高对杂草群落演替的影响
    1.2 全球变暖对杂草群落演替的影响
    1.3 降水量和干旱对杂草群落演替的影响
2 耕作模式及种植制度对农田杂草群落演替的影响
    2.1 保护性耕作对杂草群落演替的影响
    2.2 轮作对农田杂草群落演替的影响
    2.3 地膜覆盖对农田杂草群落演替的影响
    2.4 间作对农田杂草群落演替的影响
3 田间农事操作对农田杂草群落演替的影响
    3.1 施肥对农田杂草群落演替的影响
    3.2 水分管理对农田杂草的影响
    3.3 除草剂对农田杂草的影响
4 展望
    4.1 加强杂草危害的预警监测
    4.2 注重杂草综合防控技术体系的建立
    4.3 加强杂草抗药性的监测和治理
    4.4 探讨抗除草剂作物应用的发展前景及风险

四、保护性耕作条件下小麦、玉米、大豆田间杂草防治存在的问题及对策研究(论文参考文献)

  • [1]农艺措施对冀西北坝上燕麦田杂草组成及饲草产量的影响[D]. 杜玉贤. 河北农业大学, 2021(06)
  • [2]垄作原位免耕播种机侧向多级残茬处理关键技术及装备研究[D]. 侯守印. 东北农业大学, 2020
  • [3]秸秆还田和施肥对麦豆轮作土壤碳氮及微生物群落的影响[D]. 孔德杰. 西北农林科技大学, 2020
  • [4]旱灾对我国粮食主产省粮食产量的影响及抗旱对策研究[D]. 杜建斌. 中国农业科学院, 2020(01)
  • [5]喀斯特石漠化环境混农林土壤保墒与农艺截留及监测评价研究[D]. 鲍恩俣. 贵州师范大学, 2020
  • [6]石漠化环境“五水”赋存转化与混农林业高效利用模式[D]. 吴清林. 贵州师范大学, 2020
  • [7]玉米秸秆覆盖还田对土壤水热条件和杂草发生的影响[D]. 贾天宇. 东北农业大学, 2020(04)
  • [8]气吹式防堵大豆免耕播种机设计与试验[D]. 赵正涛. 安徽农业大学, 2020(02)
  • [9]上海浦东稻田杂草土壤种子库组成、动态及其性状解释[D]. 严佳瑜. 华东师范大学, 2020(12)
  • [10]农田杂草群落演替的影响因素综述[J]. 孙金秋,任相亮,胡红岩,姜伟丽,马亚杰,王丹,宋贤鹏,马艳,马小艳. 杂草学报, 2019(02)

标签:;  ;  ;  ;  ;  

保护性耕作小麦、玉米、大豆田除草问题及对策
下载Doc文档

猜你喜欢